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A method for adiabatic excitation and control of multiphasesN-bandd waves of the periodic nonlinear
SchrödingersNLSd equation is developed. The approach is based on capturing the system into successive
resonances with external, small amplitude plane waves having slowly varying frequencies. The excitation
proceeds from zero and develops in stages, as ansN+1d-band sN=0,1,2, . . .d, growing amplitude wave is
formed in thesN+1dth stage from anN-band solution excited in the preceding stage. The method is illustrated
in simulations, where the excited multiphase waves are analyzed via the spectral approach of the inverse
scattering transform method. The theory of excitation of 0- and 1-band NLS solutions by capture into reso-
nances is developed on the basis of a weakly nonlinear version of Whitham’s averaged variational principle.
The phenomenon of thresholds on the driving amplitudes for capture into successive resonances and the
stability of driven, phase-locked solutions in these cases are discussed.
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I. INTRODUCTION

The nonlinear SchrödingersNLSd equation

ict + cxx + 2sucu2c = 0, s = ± 1 s1d

is one of the most important equations of nonlinear physics.
It describes a large number of physical phenomena in non-
linear optics, plasma physics, and water wavessfor an intro-
duction to some of the problems seef1gd. The discovery of
the inverse scattering transformsISTd methodf2g and its ver-
sion for the NLS problemf3g allowed better understanding
of the multiplicity of solutions of this important equation.
However, only the most simple NLS solutions, such as plane
waves, cnoidal waves, and solitons, have attracted great at-
tention of the physics community. More complex NLS con-
structs, particularly multiphase waves sreferred to as
“N-band” solutionsf4g within the IST approachd, remained
inaccessible in applications. The reason was the difficulty of
realization of very special initial conditions for formation of
these solutionsf5g. In the present work, a simple and, we
believe, realizable procedure of generating multiphase waves
of spatially periodic NLS equation is suggested. The ap-
proach can be referred to as pattern formation by synchroni-
zation sor PFSd. The idea is to replace Eq.s1d by the per-
turbed problem

ict + cxx + 2sucu2c = «fsx,td, « ! 1 s2d

and, by starting from some simpleseven trivial,c;0d initial
conditions, to find drive function«fsx,td such that one
reaches a vicinity of the desired nontrivialsN-bandd solution
of the unperturbed system in the process of evolution. Coun-
terintuitively, our goal is to excite alarge amplitude, non-
trivial NLS wave, say from zero, by applying asmallpertur-

bation. The smallness of the drive term, however, does not
prevent finding a solution to this problem, if the desired ex-
citation process occurs during a sufficiently long period of
time. In fact, we shall see below that successive use of
simple perturbing terms in the form of plane waves with
slowly varying schirpedd frequencies allows stable genera-
tion of N-band waves of spatially periodic NLS equation
with a desired number of phases. We believe that this ap-
proach opens a new window for applications in many sys-
tems described by the NLS equation.

The physical mechanism in our approach involves capture
into resonances and adiabatic synchronizationsphase-
lockingd in the driven system. First applications of the
method to extended systems included formation of weakly
nonlinear plasma wavesf6g and solitons of the Korteweg–de
Vries sKdVd equationf7g by startingin resonance, as well as,
2- and 3-wave interactions in nonuniform mediaf8,9g both
phenomena involvingpassage throughresonance. Later,
adiabatic synchronization was used in sine-Gordon systems
f10,11g, for generation of cnoidal and standing NLS waves
f12,13g and in fluid dynamicsf14–16g. Most recently, a simi-
lar approach allowed formation of multiphase solutions of
the Korteweg–de VriessKdVd equationf17g and Toda chain
f18g. Here, for the first time, we apply the PFS idea to mul-
tiphase NLS waves. We shall see how the NLS system driven
by small amplitude, chirped frequency plane waves is cap-
tured into resonances, leading, at certain conditions, to a per-
sisting phase-lockingsthe term waveautoresonancecan be
used in this situationd despite the variation of the driving
frequencies. As the result of this synchronization, the solu-
tion evolves in the solution space of the unperturbed NLS
equation, and new phases are added to the driven wave in
successive excitation stages. At the end of the process, the
solution arrives at the vicinity of a multiphase NLS wave,
having a prescribed set of wave numbers and frequencies.

The scope of the paper will be as follows. Section II will
illustrate our approach in numerical simulations. We shall*Electronic address: lazar@vms.huji.ac.il
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use the spectral theory of the ISTf19g in this section for
interpreting the numerical results. Our theoretical analysis
proceeds in Sec. III, by considering excitation of simplest,
plane waves0-bandd solutions by synchronization. In the
same section we shall discuss a universal problem of thresh-
olds for synchronization, characterizing the PFS paradigm in
this and many other applications. Section IV will be devoted
to the theory of autoresonant excitation of 1-band solutions
by successive passage through two resonances. The excita-
tion of 1-band waves will proceed from generation of a large
amplitude plane wave by starting from zero as in Sec. III,
followed by autoresonant formation of a 1-band NLS solu-
tion by passage through another resonance. The theory of
this process will be based on a weakly nonlinear version of
Whitham’s averaged variational principlef20g for autoreso-
nant wavessSecs. IV A and IV Bd. We shall also study the
problem of thresholds on the driving amplitude for synchro-
nization in this problemsSec. IV Cd, as well as the stability
of the driven wavesSec. IV Dd. Finally, Sec. V will present
our conclusions.

II. SYNCHRONIZATION BY PASSAGE THROUGH
RESONANCES: NUMERICAL SIMULATIONS

We proceed by presenting the results of numerical solu-
tions of Eq.s2d with a properly chosen right-hand sidesRHSd
for excitation of N-band waves. The goal is to use simple
initial conditions and generate approximately the following
unperturbed NLS solutionssee Appendix Ad

c = UsQ1,Q2, . . . dexphifj + VsQ1,Q2, . . . dgj, s3d

whereU and V are 2p-periodic real functions ofN-phases
Qi =Kix−Vit, i =1, . . . ,N, wave numbersKi and frequencies
Vi are constant, whilej=K0x−V0t sthe externalphased ap-
pears in the complex exponential in Eq.s3d only. We shall
assumeL-periodicity inx in the problem, so bothc and f in
Eq. s2d are L-periodic in x, and all Ki =nik0, whereni are
integers,k0=2p /L being the principal wave number.

Our numerical procedure for generatingN-band solutions
is as follows. We start with zero initial conditions and solve
the perturbed NLS equations2d, where the driving function
is a plane wavef0=exphifm0k0−ev0stddtgj swe usem0=0
below, as an exampled having slowly varying frequency
v0std=v0r −a0t, wherea0 is a constant chirp rate, andv0r

=sm0k0d2 is the linear resonance frequency of the unper-
turbed NLS equation. Importantly sgnsa0d=s. This slow
passage through resonance att=0 will excite a slightly per-
turbed plane waves0-band solutiond f12g with amplitude and
phasefexternal phase in Eq.s3dg controlled by the chirped
driving frequency. We shall discuss this stage of excitation in
Sec. III in more detail.

When the amplitude of the 0-band solution reaches, att
= t1, some valueUst1d=A0, we switch off drivef0 and apply
a new drive,f1=exphifm1k0x−ev1stddtgj sm1=1 in our ex-
amples belowd, where the slow frequencyv1std=v1r −a1t
passessat t=0d through another resonance,v1r =−2sA0

2

+m1k0Îsm1k0d2−4sA0
2 ssee Sec. IV for detailsd with the ex-

cited 0-band solution. When chirp ratea1 is sufficiently

small, this passage through resonance will create a growing
amplitude 1-band solutionssee our example below and the
discussion in Sec. IVd which is continuously phase-locked to
f1.

Next, at some excitation stage we switch off drivef1 and
replace it by a new chirped frequency drivef2
=exphifm2k0x−ev2stddtgj sm2=2 in our examples belowd
creating a growing amplitude 2-band solution, as the new
driving frequency passes the next resonant valuev2r, and so
on. By repeatedly applying this switching on and off driving
procedure with drives of form of a plane wavesonly one
drive is present at a timed,

«f j = « expHiFmjk0x −E v jstddtGJ = « expsiwdjd, s4d

where mj is an integer, while the driving frequencyv jstd
passes through the resonance with the wave excited in the
preceding stage, one can generate anN-band solution with a
desired number of internal phases. We illustrate this proce-
dure in Figs. 1 and 2 showing a three stage excitation pro-
cess, leading to a 2-band, focusingss= +1d NLS solution.
Our simulations used a standard pseudospectral methodf21g.
The number of harmonics varied up to 256. The accuracy
was tested by increasing the number of discretization points
in both time and space.

Figure 1 presents the evolution of the maximum over pe-
riodicity lengthL sL=p in the simulationsd value of ucu=U
fsee Eq.s3dg, while Fig. 2 shows the color contour map ofucu
in three small time windows,Dt=5.2, at the ends of different
stages of evolution, denoted by numbers 1,2,3 along the
graph in Fig. 1. We used«=0.02, all chirp ratesai =0.01, and
three successive drives of forms4d with mj =0, 1, and 2.
Only one drive was present in each excitation stagestime

FIG. 1. The evolution of the maximumucu over the periodicity
length in the three-stage excitation process of a multiphase NLS
wave sthick lined. The time intervals of emergence of
N=0,1,2-band solutions are shown by arrows. The numbers along
the line indicate the times of switching different drive terms on and
off. The thin line represents saturated excitation case when two
drives are present at a time in the second excitation stage.
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intervals f−200,140g, f140, 500g, and f500, 900gd and the
corresponding driving frequency passed a resonance with the
wave created in the preceding time interval, leading to the
addition of a new phase in the solutionssee belowd. We
observe that the maximumucu increasessin averaged in every
new stage of excitation. Also,ucu is nearly a constants0.83d
in Fig. 2sad, i.e., the driven solution comprises a slightly
perturbed plane wave at the end of the first stage of excita-
tion. In contrast, Fig. 2sbd sthe end of the second excitation
staged illustrates the emerging 1-phase solution, such that
ucu=UsQ1d remains constant along the direction shown by
the red dashed line in Fig. 2sbd, i.e., along the characteristics
dx/dt=V1/K1 associated with its phaseQ1=K1x−V1t. Fi-
nally, at the end of the third stagefFig. 2scdg one observes a
more complicated pattern, which is nearly periodic alongtwo
main directionssshown by red dashed linesd. This indicates a
2-phase solution,U=UsQ1,Q2d, which becomes a singly-
periodic function of time along characteristic directions
dx/dt=V1/K1, or V2/K2, along which one of the two phases
remains constant. Finally, the thin line in Fig. 1 shows the
numerical result for the same set of parameters and initial
conditions as above, but with drivef0 sat a constant fre-
quencyd present in addition tof1 in the second excitation
stage. We see that the amplitude saturates in this case and the
continuing variation of the driving frequency does not lead to
a growing amplitude solution. We have found a similar effect

at all stages of excitation, when two drives have been present
at a time. The observed saturation is due to instability of the
driven solution and we shall discuss this instability forN
=0,1 casessas in Fig. 1d in more detail in Sec. IV.

For further clarification of our multistage excitation pro-
cess, we have analyzed the numerical solutions by means of
the spectral approach of the IST. Only a necessary minimum
of information about this method is presented below for
completeness. It is knownf19g that N-band NLS solutions
can be constructed via a set of 2sN+1d parameterslk sthe
main spectrumd and a set ofN variablesm jsx,td sauxiliary
spectrumd. The main spectrum of the unperturbed NLS is
constant in time and, for the focusing NLSss= +1d, consists
of N+1 different complex-conjugate pairs in the complex
plane, while in the defocusing casess=−1d, lk are 2N+2
real numbers. The auxiliary spectrum components are func-
tions depending on space and time viaN phasesQn of the
N-band solution. In other words,m j =m jsQ1,Q2, . . . ,QNd. If
all lk and m j and the value ofc are given at initial timet0
and positionx0, then the correspondingN-band solution can
be constructed by solving a set of first order ordinary differ-
ential equations inx and t f19g ssee Appendix Ad. On the
other hand, given anN-band solutionc at some timet, one
can calculate the corresponding IST spectra by solving cer-
tain linear eigenvalue problems. The main spectrum of a gen-
eral solution of the periodic NLS is characterized by an in-

FIG. 2. sColord The spatio-temporal structure of the solution forucu in three small time windows around times indicated by numbers 1,
2, and 3 in Fig. 1 at different stages of excitation.sad ucu=const equidistant contour lines at the end of the first excitation stagesthe plane
wave solutiond. The color of each line corresponds to the value ofucu on this line as shown in the corresponding color bar at the right. The
vertical lines illustrate spatially uniform, slowly time varying amplitude of the solutions0.82, ucu,0.84 in the chosen time window, as seen
in the corresponding color bard. sbd ucu=const contour lines at the end of the second excitation stages1-band solutiond. ucu remains constant
along the direction indicated by the red dashed line in the figure. The internal phase of the solution remains constant along this line.scd
ucu=const contour lines at the end of the third excitation stages2-band solutiond. ucu is singly-periodic in time along two characteristic
directions of constancysred dashed lines in the figured of one of the two internal phases of the solution.
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finite number of pairs of constant eigenvaluesl, however,
for the N-band solution, onlyN+1 such pairs arenondegen-
erate and needed for construction of the solution as de-
scribed above. Thus, counting the number of nondegenerate
pairs of the main spectrum, allows to diagnose the number of
phases in the corresponding solution. We use this idea in our
application as follows. We solve the driven NLS equation
numerically and view our numerical solutionsat a given
timed as the initial data for some solution of the unperturbed
NLS. From this data we calculate the main spectrum via a
discrete approximation of the scattering problemf22g. We
expect to seeN+1 nondegenerate pairs in the main spectrum
and many nearly degenerate pairs, if our driven solution is
near some large amplitudeN-band solution of the unper-
turbed NLS. Figure 3 shows the evolution pathsin the com-
plex planed of the main spectrum corresponding to the solu-
tion of the driven problem shown in Figs. 1 and 2. The
numbers 0, 1, 2, and 3 in the figure show the location of the
main spectrum values at different times of evolution repre-
sented by the same numbers in Fig. 1. One can see that a new
pair of values in the spectrum becomes nondegenerate at
each stage of excitation and the final solutionsat time indi-
cated by number 3 in Figs. 1 and 3d is a slightly perturbed
2-band solutionsits main spectrum hasthreenondegenerate
pairs of complex valuesd.

Next, we illustrate that our driven solution satisfies par-
ticular phase-locking relations with the driving waves at dif-
ferent excitation stages. For example, in the first stages0-
band, plane wave solutiond, the phase locking is between the
driving and the external phases, i.e.,j<wd0. In contrast, in
the second stagesexcitation of the 1-band solutiond the
phase-locking involves a triad of phases, i.e.,j+Q1<wd1.

We illustrate these two phase-locking relations in Figs. 4sad
and 4sbd. The spectral theory connects between the frequen-
cies and wave numbers of theN-band solutions and the IST
spectraf4g. In casesN=0 and 1, these connections are simple
ssee Appendix Ad. For example, ifl1

±=a1± ib1 is the relevant
nondegeneratepair of the main spectrum of the plane wave
sN=0d, then

K0 = − 2a1, V0 = 4a1
2 − 2b1

2. s5d

The driving wave has zero wave number in the first exci-
tation stage in our example in Figs. 1–3. Therefore,K0=0 in
the excited solution, and, from Eq.s5d, a1=0 sthis result can
be seen in the spectrum in Fig. 3 between points 0 and 1d.
Therefore, the above-mentioned phase locking,j<wd1, is
equivalent to conditionV0std=−2b1

2<v0std. Fig. 4sad shows
the numerically found evolution of −2b1

2 sfull thick lined and
compares it with the chirped driving frequencysdotted lined.
One observes the continuing phase lockingsautoresonanced
in the system beyond the linear resonancest.0d. The phase
locking is destroyed andV0 stays constant after the first
stage drive is switched off att=140. One can also see slow
oscillating modulations ofV0std in autoresonance around the
linearly decreasing averaged valuesthe latter follows the
variation of the driving frequencyd. These modulations com-
prise another characteristic feature of autoresonance in the
systemssee Sec. IIId. Next, forN=1, with two nondegenerate
pairs of the main spectrum,l1,2

± =a1,2± ib1,2, we havessee
Appendix Ad

K0 = 2kResm1dl − s, V0 = q − 2skResm1dl, s6d

and V1=sK1, where s=2sa1+a2d, q=4sa1
2+a2

2+a1a2d−2sb1
2

+b2
2d, andk¯l denotes averaging over one oscillation of the

FIG. 3. The evolution of five pairs of the main spectrum of the
driven solution shown in Figs. 1 and 2 in the complex plain. The
segments 0-1, 1-2, 2-3, and 3-4 display evolution in subsequent
time intervals of excitation of 0, 1, and 2-band solutions during the
three excitation stages indicated by the same numbers in Fig. 1. One
can see the removal of degeneracy of an additional pair in the main
spectrum in each excitation stage, corresponding to appearance of a
new phase in the solution. All other pairs of the main spectrum
remain degenerate.

FIG. 4. The frequencies locking in the first two stages of exci-
tation in Fig. 1. The frequenciesV0,1 of the driven wave are found
via the main IST spectrum of the driven solution.sad V0<v0 sthick
lined in the first excitation stage beyond the linear resonancest
.0d. sbd V0+V1<v1 in autoresonance thick linesblued in the sec-
ond excitation stage. The tilted straight lines show chirped driving
frequencies. The thin lines insad andsbd illustrate dephasing of the
excited wave for the driving amplitudes below the thresholds for
synchronization.
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internal phase. Since, again,K0=0 andK1=k0 sthe same as
the wave number in the second stage drived, we have
2kResm1dl=s. Therefore,

V0 = − 2sb1
2 + b2

2 + 2a1a2d, V1 = 2sa1 + a2dk0. s7d

We test the phase-locking in the second excitation stage in
Fig. 4sbd, by comparingV0+V1 found from the main spec-
trum via Eqs.s7d with the driving frequencyv1std. Again, we
observe efficient phase-locking and the characteristic au-
toresonant oscillations around linearly varying average value
of V0+V1 in Fig. 4sbd for times t.390, i.e., beyond the
linear resonancesv1=vr1; see Sec. IVd. This phase-locking
discontinues att=500, as the second driving wave is
switched off. We shall present the theory of the phase-
lockings inN=0 and 1 stages in Secs. III and IV.

The frequency-locking diagrams of the type shown in Fig.
4 allow us to demonstrate another important phenomenon
associated with our excitation scheme, i.e., the existence of
thresholds on the driving amplitudes for capturing the system
into resonance. We have repeated the calculations for the
same parameters as above, but«0=0.009 fin Fig. 4sadg and
«1=0.007 fin Fig. 4sbdg, which are just below the corre-
sponding threshold amplitudesf«0,1

th =0.0092,0.0072, see
Eqs.s12d ands50d belowg and show the results by thin lines.
One can see that the phase locking in both cases discontin-
ues, shortly beyond the linear resonances. We shall find ex-
pressions for these thresholds in Secs. III and IV.

Our final illustration of PFS in the NLS system shows the
case of the defocusing NLS equationss=−1d. We performed
simulations with the same parameters for the defocusing case
as in Figs. 1–4 but reversed the signs of the driving fre-
quency chirp rates and added an additionalsfourthd excita-
tion stage withk4=−k0, «3=0.02, anda3=−0.01 in time in-
terval f900,1200g. Figure 5sad shows the evolution of the
maximum ucu until the arrival at the final 3-band solution.
The successive emergence of four nondegenerate pairs of
main spectrum components in the defocusing NLS system is
illustrated in Fig. 5sbd. The main spectrum is real in this case
and Fig. 5sbd shows the actual time evolution of the spec-
trum, where each new phase in the solution corresponds to
the removal of one degeneracy.

III. EXCITATION OF PLANE NLS WAVES AND
THRESHOLD PHENOMENON

The starting point of our theory is the problem of excita-
tion and control of plane NLS waves by synchronization.
This problem was first discussed in Ref.f12g, but the issue of
thresholds for synchronization by passage through resonance
was raised for the first time later in seemingly unrelated,
nonneutral plasma experimentsf23g. Here, we focus on the
thresholds for capture of plane NLS waves into resonance.

Consider the driven NLS system,

ict + cxx + 2sucu2c = « exphifkx − f0stdgj, s8d

where k=mk0 and the driving frequencyv0=df0/dt=v0r
−at is chirped linearly in time. We seek a time modulated
plane wave solution of Eq.s8d of form c=Ustdexpsijd,

where amplitudeU.0, and phasej=kx−xstd is real. Then,

iUt + sxt − k2 + 2sU2dU = « exphisx − f0dj

or, by separating the real and imaginary parts and defining
phase mismatchF=f0−x,

Ut = − « sinF, s9d

Ft = v0r − k2 − at + 2sU2 −
«

U
cosF. s10d

Finally, we choosev0r =k2 sthe driving perturbation passes
linear resonance att=0d, correlate the sign of the chirp rate
a=suau with s, and introduce new time variablet= uau1/2t,
and amplitude,A=21/2uau−1/4U. Then Eqs.s9d and s10d can
be combined into the following equation forC=A expsiFd:

iCt + ssuCu2 − tdC = h, s11d

whereh=21/2uau−3/4«. Remarkably, thissingleparametershd
system, describing capture into resonance and synchroniza-
tion in the present application, also characterizes synchroni-
zation of 1-band NLS waves into resonancessee Sec. IVd,
and related PFS problems in plasmasf23g, fluid dynamics
f14g, planetary dynamicsf24g, and atomic physicsf25,26g.
Thus, Eq.s11d is a fundamental equation of the PFS para-
digm. In studying passage through the linear resonance att
=0, we seek asymptotic solutions of this equation at large
positivet subject to zero initial condition at large negativet.
The analysis showsssee discussion of a similar problem in
f14gd that two such asymptotic solutions may emerge after
passage through resonance, i.e., eithersad constant amplitude
sboundedd solution C=A0 exps−ist2/2d, or sbd the un-

FIG. 5. Excitation of the multiphase solution via synchroniza-
tion in the case of defocusing NLS equation. The parameters and
initial conditions are the same as in Fig. 1, but the signs of the
driving frequency chirp rates are opposite and an additionalsfourthd
excitation stages3-band solutiond with k4=−k0, «3=0.02, anda3

=−0.01 in time intervalf900,1200g is added in the simulation.sad
Maximum ucu over periodicity length versus time;sbd the succes-
sive opening of 4 gaps in the main spectrumsall reald as one passes
different resonances in the process of evolution.
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bounded solution,C= ±t1/2. The phase mismatchF=st2

between the driven and driving waves for the bounded solu-
tion grows quadratically in time. It is this increasing mis-
match, which leads to the amplitude saturation atA0 after
passage through resonance. In contrast, for the unbounded
solution, the mismatch remains constantseitherF=0 or pd,
meaning a perfect phase locking in the driven system, as the
amplitude grows continuously beyond the linear resonance.
In other words, the driving frequency shiftt is balanced by
the nonlinear frequency shiftuCu2 in Eq. s11d continuously,
so that the system stays in resonance despite the variation of
the driving frequency. This is the desired autoresonant solu-
tion in the problem. But how the system chooses between the
bounded and phase-locked, growing amplitude states and
what determines the phase mismatch valueF=0 or p in the
latter case? One finds that the transition of the system to
autoresonance is controlled by single parameterh in Eq.
s11d, while F asymptotically approaches 0 orp depending
on the sign ofs. Numerically, the transition occurs forh
.hth=0.411 f26g sa more physical line of argumentsf14g
using a dynamical picture of resonant interaction yields a
slightly higher approximate threshold valuehth<3−3/4

=0.438d. By returning to our original parameters, we obtain
the threshold driving amplitude

«th = 0.291uau3/4. s12d

For «.«th the system is always in autoresonance, i.e., its
amplitudeU grows ast1/2 at large positivet, while phase
mismatchF<0 sfor s= +1d and p sfor s=−1d in average.
The theoryf14g also shows that at finite times, in addition to
the smooth averaged evolution described above, both the am-
plitude and the phase mismatch perform slow oscillations
around the average with characteristic frequencyn scaling as

n < 2Î«U = Î2huauA. s13d

One can see the predictedt1/2 growth of the amplitude, as
well as the slow autoresonant oscillations in our simulation
results in Figs. 1 and 4 in the firsts0-bandd stage of excita-
tion. This completes our discussion of passage through reso-
nance and synchronization of plane NLS waves and we pro-
ceed to synchronized 1-band solutions.

IV. AUTORESONANT EXCITATION AND STABILITY OF
1-BAND WAVES

A. Reduced, weakly nonlinear problem

Consider the driven problem in the second stage of exci-
tation in Fig. 1,

ict + cxx + 2sucu2c = « expsiwd1d, s14d

where wd1=mk0x−f1std, and df1/dt=v1std=v1r −at. This
equation is similar to Eq.s8d, but, instead of zero initial
conditions, we proceed from the plane wave solution excited
in the first stage, as described in Sec. III. We shall limit
discussion tom=1 case for simplicity. We write the driven
solution asc=U expsiud, U.0, Im u=0, and separate the
real and imaginary parts in Eq.s14d:

Ut + uxxU + 2uxUx + « sinswd1 − ud = 0, s15d

utU − Uxx + ux
2U − 2sU3 + « cosswd1 − ud = 0. s16d

This system can be also obtained from the variational prin-
ciple

dSE E dxdtLsU,Ux,Ut,ux,ut,tdD = 0, s17d

where LagrangianL=L0+L1,

L0 =
1

2
fUx

2 + U2sux
2 + utdg −

1

2
sU4, s18d

andL1=«U cossk0x−f1−ud. Since the unperturbed Lagrang-
ian L0 depends onux,ut but not onu su is the potentiald one
can conveniently approach our problem by using Whitham’s
averaged variational principlef20g. Generalization of this ap-
proach to autoresonantly driven two-component fields was
developed inf27g and applied to some NLS cases inf12g.
The method describes slow space-time modulations of
driven, rapidly oscillating fields and uses the small slowness
parameter associated with these modulations in developing a
perturbation theory, yielding evolution equations of relevant
slow field variables. In the NLS applicationf12g, one writes
the solution as

c = UsQ,tdexphifj + VsQ,tdgj, s19d

wherej=K0x−eV0stddt, bothU andV are 2p-periodic in the
fast phase variableQ=K1x−eV1stddt, K1=mk0, while the
explicit time dependence inU andV, as well as in frequen-
ciesV0,1std is assumed to be slow. Note that Eq.s19d has the
form of a slowly modulated 1-band solutionfsee Eq.sA6d in
Appendix Ag. By Whitham’s approach, instead of working
with the exact Lagrangian, one averagesL overQ between 0
and 2p, defining the averaged LagrangianL=kLlQ. Then
L=LsP,jx,jt ,Qx,Qt ,Fd becomes a function of a setP of
slow dependent variablesssee Appendix Bd, as well as of
phasesj and Q, enteringL either via the slow frequencies
V0,1 and wave vectors or the slow phase mismatchF f12g
swe shall see below thatF=Q+j−wd1 in the case of inter-
estd. LagrangianL is used in the averaged variational prin-
ciple

dSE E dxdtLsP,jx,jt,Qx,Qt,FdD = 0, s20d

where nowx and t are slow space-time variables. Then, to
the desired order of our perturbation scheme, variations with
respect to all independent variables,P,j ,Q, yield a set of
slow evolution equations describing capture into resonance
and synchronization in the problem.

Here, focusing primarily on the initial autoresonance
stage describing the threshold for synchronization in gener-
ating 1-band solutions, we shall adopt a simplified, weakly
nonlinear version of the averaged variational principle. The
idea is to expandU andV in Eq. s19d in Fourier series inQ,
keep the lowest significant number of termsszero and first
two harmonicsd in the series, substitute the result inL, and
calculate weakly nonlinearL by averaging overQ. The
proper expansion isssee Appendix Bd
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U < u0 + u1 cosQ + u2 cos 2Q, s21d

V < − v1 sinQ − v2 sin 2Q, s22d

where we assume the following ordering of the slow ampli-
tudesui andvi: u0 may be ofOs1d, uu1u, uv1u!1, andu2, v2

,Osu1
2d. With these definitions, the averaged LagrangianL

depends on seven independent variablesP=hu0,1,2,v1,2j, Q,
andj fwe shall assumej=−eV0stddt in this applicationg and
becomes, toOsu1

4d fsee Eqs.sB7d–sB12d in Appendix Bg,

L = −
s

2
L0 −

V0

4
L1 +

V1

4
L2 +

K1
2

4
L3 + Ld, s23d

where

L0 = u0
4 + 3u0u1

2u2 + 3u0
2su1

2 + u2
2d + 3u1

4/8, s24d

L1 = 2u0
2 + u1

2 + u2
2, s25d

L2 = 2u0u1v1 + u1v1u2 + u1
2v2 + 4u0u2v2, s26d

L3 = u1
2 + 4u2

2 + v1
2su0

2 + 3u1
2/4 + u0u2d + 4u0u1v1v2 + 4u0

2v2
2,

s27d

and the driving term

Ld =
«

2
scosF, s28d

wheres=su1−u0v1d andF=Q+j−wd1.

B. Variational equations

At this stage we write the variational equations in the
problem. We start from variation in Eq.s20d with respect to
u0. This yieldsfto Osu1

2dg expression

2u0
2 = − sV0 − 3u1

2 s29d

and, to zero order,u00
2 =−ss /2dV00. Similarly, variations with

respect tou1 andv1 give lowest orderslineard equationsswe
shall go to higher order in these equations laterd:

sK1
2 − 4su00

2 du1 + V1u00v1 = 0, s30d

V10u1 + K1
2u00v1 = 0, s31d

yielding linear dispersion relation

V10
2 = K1

2sK1
2 − 4su00

2 d s32d

and lowest order connection

v1 = −
r

u00
u1, s33d

wherer=V10/K1
2=Î1−4sz and z=su00/K1d2 are important

parameters in the problem.
Next, we take variations with respect tou2 andv2. This,

after use of Eq.s33d, to Osu1
2d, results in

S−
V00

2
+ 2K1

2 − 3su00
2 Du2 + V10u00v2 =

3s

2
u00u1

2, s34d

r

2
u2 + u00v2 =

3

8

r

u00
u1

2. s35d

We solve these equations foru2 andv2:

u2 = S2sz −
1

4
D u1

2

u00
, s36d

v2 = rS1

2
− szD u1

2

u00
2 . s37d

Now, we take variations with respect tou1 andv1 again,
but go to higher order inu1 and include the driving terms
fcompare to Eqs.s30d ands31dg. This, after use of Eqs.s33d,
s36d, ands37d, yields

sK1
2 − V0 − 6su0

2du1 + V1u0v1 + N1 = « cosF, s38d

V1u0u1 + K1
2u0

2v1 + N2 = − «u00 cosF, s39d

where N1=12u1
3sr2/32z−zd and N2=s3V10u1

3/8u00ds1−szd.
Then, we use Eq.s39d to eliminatev1 in Eq. s38d and obtain
higher order dispersion relationfcompare to Eq.s32dg

V1
2 − K1

2sK1
2 + 2V0d + qu1

2 =
«V10

u1
s1 + r−1dcosF, s40d

whereq=12s2u00
2 −sK1

2d. Finally, we take variations with re-
spect toQ andj, to get two slow evolution equations

s]L/]V1dt =
«

2
ssinF s41d

and

s]L/]V0dt =
«

2
ssinF. s42d

These equations yield the conservation law

]L/]V0 − ]L/]V1 < 2u0u1v1 + 2u0
2 + u1

2 = const, s43d

which, upon use of Eq.s33d and zero initial conditions onu1
andv1, gives

u0
2 = u00

2 + sr − 1/2du1
2. s44d

Then, from Eq.s29d,

V0 = − 2sfu00
2 + s1 + rdu1

2g. s45d

The last two equations can be used in Eq.s40d to rewrite it as

V1
2 − V10

2 + ru1
2 =

«V10

u1
s1 + r−1dcosF, s46d

wherer =4K1
2s6y−2s+srd. Finally, we use Eq.s46d to find

the approximate expression for the frequency shiftdV1
=V1−V10 near the linear resonance:

dV1 < − 2S6
y

r
−

2s

r
+ sDu1

2 +
«

2u1
s1 + r−1dcosF.

s47d
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C. Threshold for synchronization

At this stage, we use Eqs.s45d ands47d to write the evo-
lution equation for the phase mismatchF. Assuming passage
through linear resonance att=0, i.e.,v1=V10+V00−at, we
obtain

Ft = v1 − V1 − V0 = − at + sFsrdu1
2 −

«̃

2u1
cosF, s48d

where F=4−r−r−1 and «̃=«s1+r−1d. We supplement this
equation by Eq.s41d, which can be written assu0u1v1dt

=«s1+rdu1 sinF or, to lowest order,

u1t = − s«̃/2dsinF. s49d

Now, we focus onF.0 casesi.e., 0.27,r,3.73d, set a
=suau, defineA2;uau−1/2Fu1

2, h= 1
2«̃F1/2uau−3/4, and introduce

new complex dependent variableC=A expsiFd. Then, Eqs.
s48d and s49d reduce to Eq.s11d for C. Consequently, we
again encounter the characteristic threshold phenomenon
ssee Sec. IIId, i.e.,h must exceed 0.411 for capture into reso-
nance and subsequent synchronization. By returning to our
original parameters, we find the threshold driving amplitude
for synchronization:

«1
th =

0.822uau3/4r

s1 + rduFu1/2 , s50d

where uFu replacesF to includeF,0 case. Figure 6 shows
this threshold versusu00 ssolid linesd and compares it with
the results of numerical simulationsstriangles fors= +1 and
circles for s=−1d in the casek0=2, anda=0.02. Note that

u00,1 in our focusing NLS exampless= +1d for stability.
Generally, a very good agreement between the analytic pre-
diction and simulations is observed except in the vicinity of
the spike in the analytic result atu00=0.96 sr=0.27d in the
focusing NLS case. We notice that, at the location of the
spike, coefficientF in the lowest order nonlinear frequency
shift in Eq. s48d vanishes. Therefore, we conjecture that the
difference between the simulation and analytic results in the
vicinity of the spike can be explained by the necessity of
adding higher order nonlinear frequency shifts in the theory.
Nevertheless, because of algebraic complexity, inclusion of
higher than second order nonlinear frequency corrections
within our perturbation scheme remained outside the scope
of the present work. Finally, we observe that, as for 0-band
solutions, the amplitude of the autoresonant 1-band solution
has small oscillating modulations seen in Fig. 1, having char-
acteristic frequencyfcompare to Eq.s13dg

n < Î2huauA = Î«s1 + r−1duFuu1. s51d

D. Instability of doubly resonant 1-band solutions

Now, we discuss instability of 1-band solutions in the case
when two resonant drives are present at a time, as observed
in our simulationsssee Fig. 1d. We consider the driven sys-
tem fcompare to Eqs.s8d and s14dg

ict + cxx + 2sucu2c = «0 expsiwd0d + «1 expsiwd1d, s52d

where, as in Secs. III and IV A–IV C,wd0=−f0std, wd1

=k0x−f1std anddf0,1/dt=v0,1, but both resonant drives are
present at a time. We assume that autoresonant excitation of
0-bandsspatially uniformd solution takes place first, reaching
amplitudeucu=u0 at some timet1 as described in Sec. III. We
shall also assume that att1 the system resonates with the
second drive, so that one expects excitation of a 1-band so-
lution beyond this time as described in Sec. IV A. However,
in contrast to Sec. IV A, we do not switch off«0, so both
drives resonate beyondt1. Our goal is to investigate stability
of this doubly resonant 1-band solution via the Whitham’s
approach.

We use representations19d, c=UsQ ,tdexpfisj+VsQ ,tddg,
with definitionss21d and s22d, covering both 0- and 1-band
solutions in calculating the averaged LagrangianL in the
problem. Obviously,L has the same unperturbed part as in
Eq. s23d, but a more complicated driving termfcompare to
Eq. s28dg

Ld = «0u0 cosF0 +
«1

2
scosF1, s53d

where F0=j−wd0, F1=Q+j−wd1, s<u1s1+rd and both
phase mismatchesF0,1, are assumed to be bounded and slow
ssynchronization assumptiond. The variational amplitude
equationss41d and s42d of Sec. IV B in this case transform
into

S1

2
u0u1v1D

t
=

«1

2
u1s1 + rdsinF1, s54d

FIG. 6. The threshold«1
th for synchronization of 1-band NLS

waves versus parameteru00. Numerical thresholds for focusingss
= +1, trianglesd and defocusingss=−1, circlesd 1-band NLS solu-
tions are compared with analytical predictions, Eq.s50d ssolid
linesd. Note thatu00,1 for stability in the focusing case in our
example. The spike in the analytic result atu00=0.96 sr=0.27d in
this case corresponds to vanishingOsu1

2d frequency shift. Higher
order nonlinear frequency corrections must be added in the theory
to explain deviation from the simulation results in the vicinity of the
spike.
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S1

2
u0

2 +
1

4
u1

2D
t
= − «0u0 sinF0 −

«1

2
s1 + rdsinF1 s55d

or, by using lowest order relations33d and combining the two
equations,

u1t = −
«1

2
s1 + r−1dsinF1, s56d

u0t = − «0 sinF0 +
«1u1

4u0
sr−1 − 2r − 1dsinF1, s57d

where, as before,r=V10/K0
2. We also add variational equa-

tions s29d and s40d, valid in the two drive case, i.e.,

V0 = − ss2u0
2 + 3u1

2d, s58d

V1
2 − K1

2sK1
2 + 2V0d + 12s2u0

2 − sK1
2du1

2 = 0, s59d

where, assuming sufficiently large excitationss«V10/2u1

!1d, we neglect the driving term in Eq.s40d. Next, we use
Eq. s58d in Eq. s59d to write

V1
2 − K1

2sK1
2 − 4su0

2d + 6s4u0
2 − sK1

2du1
2 = 0,

and seek solution foru0 in the formu0=u00+du0, whereu00
is the value at the linear resonance andudu0u /u00!1. Then,
upon expansion in Eq.s58d and in the last equation,

V0 < − ss2u00
2 + 4u00du0 + 3u1

2d, s60d

V1 < V10 −
4su00

r
du0 + 3sru1

2. s61d

Finally, we use Eqs.s60d ands61d to write evolution system
F0t=v0−V0 and F1t=v1−V1−V0 for the phase mis-
matches,

F0t = 2su00
2 − v0 + 4su00du0 + 3su1

2, s62d

F1t = 2su00
2 − V10 − v1 + 4su00s1 + r−1ddu0 + 3ss1 − rdu1

2.

s63d

Equationss54d, s55d, s62d, ands63d comprise a complete set
of coupled ordinary differential equations describing evolu-
tion of du0, u1, andF0,1 in the two drive case. The analysis
of this system of equations follows next.

We seek solutions of Eqs.s54d, s55d, s62d, ands63d of the

form du0=du0+Du0, u1= ū1+Du1, F0,1=F̄0,1+DF0,1, where

Du0,1 andDF0,1 are small and oscillating, whileū0,1 andF̄0,1
are smooth, slowly evolving average components of the cor-

responding dependent variables. We shall assume thatF̄0,1
are near zero orp, for s= +1 or −1, respectively. We shall
also assume that the averaged components are determined by
the slow quasiequilibrium of Eqs.s54d, s55d, s62d, ands63d:

ū1t = −
«1

2
s1 + r−1dsin F̄1,

ū0t = − «0 sin F̄0 +
«1u1

4u0

sr−1 − 2r − 1dsin F̄1,

2su00
2 − v0 + 4su00du0 + 3sū1

2 = 0,

2su00
2 − V10 − v1 + 4su00s1 + r−1ddu0 + 3ss1 − rdū1

2 = 0.

Then, by linearization in Eqs.s54d, s55d, s62d, ands63d, one
obtains a system forDu1,2 andDF0,1

Du1t = −
s«1

2
s1 + r−1dDF1,

Du0t = − sF«0DF0 +
«1u1

4u0

sr−1 − 2r − 1dDF1G ,

DF0t = sf4u00Du0 + 6ū1Du1g,

DF1t = sf4u00s1 + r−1dDu0 + 6ss1 − rdū1Du1g.

We seek solutions of this system in the formDu0,2, DF1t
,exps−intd. This yields the characteristic equation

sn2 − n0
2dsn2 − n1

2d − b = 0, s64d

where n0
2=4«0u00, n1

2=«1ū1s1+r−1ds4−r−1−rd, and b
=8«0«1u00ū1s1+r−1dsr+r−1+2d. If one of the driving ampli-
tudes«0,1 vanishes, the characteristic frequencies becomen
=n0,1 in accordance with Eqs.s13d and s51d. When both
drives are present, the characteristic equation yields two so-
lutions

n±
2 =

1

2
sn0

2 + n1
2d ±Î1

4
sn0

2 + n1
2d2 + c, s65d

wherec=12«0«1u00ū1s1+r+r−1+r−2d. One ofn±
2 in Eq. s65d

is always negative because of the positiveness ofc. This
means instability, i.e., dephasing and saturation of the driven
solution, as observed in numerical simulations with two
drives present in the second excitation stage in Fig. 1. This
completes our analysis of autoresonant 1-band NLS waves.

V. CONCLUSIONS

sad We have suggested a method of excitation and control
of N-band solutionssN phase wavesd of the nonlinear
SchrödingersNLSd equation in the framework of pattern for-
mation by synchronizationsPFSd. The PFS idea, in general,
is based on capturing the system into resonances with exter-
nal driving perturbations having slowly varying frequencies
and/or wave vectors. In the present application, we have con-
sidered spatially periodic NLS problem and successively per-
turbed the NLS equation by plane waves having different
wave numbers 2pm/L sm being an integer andL the period-
icity lengthd and slowly varying frequencies. Each frequency
passed through a resonance in the system. The perturbing
waves were arranged so that only a single drive was present
at a time.

sbd The suggested excitation scheme started from zero and
excited a spatially uniforms0-bandd solution first, by passage
through resonance with a small amplitude chirped frequency
oscillation. The solution was continuously phase-locked
ssynchronizedd with the drive despite the variation of the
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driving frequency. The amplitude of the wave increased in
the process of evolution to continuously match the nonlinear
frequency shift of the driven solution to that of the driving
oscillation. Such nonlinear, automatically synchronized evo-
lution of a wave is usually referred to as wave autoreso-
nance.

scd We have switched off the uniform drive at some exci-
tation stage of the 0-band solution and added a new traveling
wave perturbation with a slowly chirped frequency. Passage
through resonance with this perturbation yielded autoreso-
nant excitation of a 1-band solution. Next, one could again
switch off the drive and replace it by another plane wave
with a different wave number and chirped frequency and so
on. This process allowed autoresonant excitation of 2- and
higherN-band solutions. Our approach was illustrated in nu-
merical simulations, where the spectral analysis of the in-
verse scattering transform method for a periodic NLS system
was used for diagnostics.

sdd We have studied excitation of spatially uniforms0-
bandd solutions by passage through resonance in more detail.
This problem yields a universal single parameter ordinary
differential equations11d characteristic of many other reso-
nantly driven wave applicationssautoresonant excitation of
1-band solutions, for exampled. This equation describes the
threshold phenomenon in autoresonant systems, i.e., the ex-
istence of a critical value of the driving amplitude above
which the capture into resonance is guaranteed. This critical
amplitude scales asuau3/4, a being the driving frequency
chirp rate.

sed We have also studied autoresonant excitation of
1-band solutions via a weakly nonlinear version of the
Whitham’s averaged variational principle. This approach al-
lows to reduce the fundamental equations11d for this prob-
lem. The threshold amplitudes predicted by this theory were
in a good agreement with simulations. It was also shown, by
using the Whitham’s approach, that simultaneous presence of
two drives in the process of excitation of 0- and 1-band so-
lutions results in instability, as observed in numerical simu-
lations.

sfd Our analytic theory was limited to autoresonant 0- and
1-band solutions. Nevertheless, numerically, we have ob-
served successive excitation ofN-band waves withN.1 for
both the focusing and defocusing NLS systems. The theory
of such synchronized adiabatic excitationsspossibly within
the IST approachd, particularly the theory of thresholds for
capture into resonance, as well as applications to other sys-
tems exhibitingN-band solutionsssine-Gordon equation, for
exampled seem to comprise a set of interesting goals for fu-
ture research in the field.
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APPENDIX A: FREQUENCIES OF 0- AND 1-BAND
SOLUTIONS VIA IST APPROACH

The IST is a convenient method for describingN-band
solutions of the periodic NLS equation. The details of this

application of the method can be found elsewheref4,5,19g.
This appendix presents only minimal information from the
IST theory, necessary for our analysis. It is knownf19g that
N-band NLS solutions can be constructed from a set of 2N
+2 parameterslk sthe main spectrumd and a set ofN vari-
ables m jsx,td sauxiliary spectrumd. The main spectrum is
constant in time and, for the focusing NLSss= +1d, consists
of N+1 complex conjugate pairs, while in the defocusing
casess=−1d, all lk are real. The auxiliary spectrum compo-
nents are functions depending on space and time viaN
phasesQn=Knx−Vnt of theN-band solution. In other words,
m j =m jsQ1,Q2, . . . ,QNd is a 2p-periodic function of its argu-
ments. If alllk andm j and the value ofc are given at initial
time t0 and positionx0, the correspondingN-band solution
can be constructed by solving the following set of evolution
equations inx and t f19g:

m jx =
− 2is jfpk=1

2N+2
sm j − lkdg1/2

plÞ j
sm j − mld

, sA1d

m jt = S o
k=1

2N+2

l j − 2o
mÞ j

mmDm jx, sA2d

i]t ln c =
3

2
S o

k=1

2N+2

l jD2

− 2o
j.k

l jlk − 2S o
k=1

2N+2

lkDSo
k=1

N

mkD
+ 4o

j.k

m jmk, sA3d

i]x ln c = o
k=1

2N+2

l j − 2o
j=1

N

m j , sA4d

where s j = ±1 depending on which sheet of the Riemann
surface defined byfPszdg1/2=fpk=1

2N+2sz−lkdg1/2 the variable
m j is on. Formally, the last two equations can be written as

i]t ln c = V1sQd, i]x ln c = V2sQd, sA5d

whereQ=fQ1,Q2, . . . ,QNg, while V1,2 are 2p-periodic func-
tions of all N arguments. Then, by writingc=U expsiFd,
ImsU ,Fd=0, we find evolution equations

]t ln U = ImfV1sQdg, ]x ln U = ImfV2sQdg,

and

Ft = − RefV1sQdg, Fx = − RefV2sQdg.

Therefore, the generalN-band solution can be written as

csx,td = UsQdexphifj + VsQdgj, sA6d

where bothU and V are real periodic functions of allQ
components, while the frequency and wave number associ-
ated with the external phasej are

V0 ; − jt = kReV1sQdlQ, sA7d

K0 ; jx = − kReV2sQdlQ, sA8d

and k. . .lQ means averaging over allQk.
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Now, we apply these results to casesN=0,1ss= +1d.
There exists only a single nondegenerate pair of main spec-
trum components, sayl1

±=a1± ib1, for N=0 case. Then, from
Eqs. sA3d and sA4d, V1=4a1

2−2b1
2, V2=2a1, and, therefore,

c=U0 expsijd, whereU0=const, while the external phasej
=K0x−V0t+j0, j0=const, where

V0 = 4a1
2 − 2b1

2, K0 = − 2a1. sA9d

In N=1 case, the solution has the formc=UsQ1dexpifj
+VsQ1dg, and there are two pairs of nondegenerate, complex
conjugate componentsl1,2

± =a1,2± ib1,2 in the main spectrum
and the corresponding single auxiliary spectrum component
m1. Then, from Eqs.sA3d, sA4d, sA7d, andsA8d we find

V0 = 4sa1
2 + a2

2 + a1a2d − 2sb1
2 + b2

2d − 4sa1 + a2dkRem1l,

sA10d

K0 = − 2sa1 + a2d + 2kRem1l. sA11d

At the same time, Eq.sA2d yields the phase velocity associ-
ated with the internal phase

V1/K1 = o l j = 2sa1 + a2d. sA12d

Thus, if wave numbersK0 andK1 of the 1-band solution are
known, Eqs.sA10d–sA12d yield the associated frequencies
V0 andV1 via the relevant nondegenerate pairs of the main
spectrum.

APPENDIX B: WEAKLY NONLINEAR AVERAGED
VARIATIONAL PRINCIPLE

We describe our driven NLS system via variational prin-
ciple s17d

dSE E dxdtLsU,Ux,Ut,ux,ut,tdD = 0, sB1d

where LagrangianL=L0+L1, its unperturbed part is

L0 =
1

2
fUx

2 + U2sux
2 + utdg −

s

2
U4, sB2d

andL1=«U cossk0x−f1−ud represents the driving perturba-
tion. The Whitham’s approachf20g to the problem is a per-
turbation expansion based on representing solutions of our
driven system as slowly modulated solutions of the unper-
turbed system. To this end we writef12g U=UsQ ,td and u
=j+VsQ ,td, where Q=K1x−eV1stddt, K1=mk0, j=K0x
−eV0stddt, and the explicit time dependence inVsQ ,td and
V0,1std is due to the perturbation, and assumed to be slow.
The unperturbed LagrangianL0 in this representation be-
comes a function of asingle independent fast angle variable
Q and assumes the formL0sU ,UQ ,VQd=1/2hK1

2UQ
2

+U2fsK0+K1VQd2−sV0+V1VQdgj−ss /2dU4. This Lagrang-
ian describes a two-degrees-of-freedomsU ,Vd dynamical
problem in Q, where V is a cyclic variable. The problem

possesses two constants of motionE=UQsL0dU+VQsL0dV

−L0 s“energy”d and M =sL0dVQ
=f2K1sK0+K1VQd−V1gU2

s“momentum”d and, therefore, is integrable. Now, one can
expressVQ in terms ofU andM

VQ =
V1

2K1
2 −

K0

K1
+

M

2K1
2U2 , sB3d

which, upon substitution into the expression forE yields a
one-degree-of-freedom problem forU, which can be inte-
grated in quadratures. This problem describes oscillations of
U in a one-dimensional quasipotential and we viewQ as a
canonical angle variable of these oscillations. Then,U fandV
via Eq. sB3dg in the unperturbed problem becomes a
2p-periodic function ofQ. In the presence of forcing in our
application,E,M, as well as,V0,1 become slow functions of
time. The evolution of these slow variables is described by
Whitham’s averaged variational principle,

dSE E dxdtLsE,M,K0,V0,K1,V1,FdD = 0, sB4d

where the averaged LagrangianL is obtained by averaging
L=L0+L1 over one period, 2p, of the fast angle variableQ,
keeping the slow time dependence inL0,1 fixed. The objectF
in the averaged Lagrangian is the phase mismatchsF=Q
+j−wd1 in the case of interestd, assumed to be slow in the
phase-locked solution. Variations in Eq.sB4d with respect to
E, M, Q, andj yield the desired slow evolution equations in
our driven problem. This is the essence of the fully nonlinear
Whitham’s approachf12g to excitation of synchronized
1-band NLS waves. Since the problem of thresholds in the
present application is a weakly nonlinear phenomenon, we
shall use a weakly nonlinear version of the Whitham’s
method.

In the weakly nonlinear case we writefsee Eq.s21dg

U < u0 + u1 cosQ + u2 cos 2Q, sB5d

whereui are slow amplitudes ordered asu0,Os1d; uu1u!1,
and u2,Osu1

2d. Then, from Eq.sB3d, the weakly nonlinear
form of V is

V < − v1 sinQ − v2 sin 2Q, sB6d

where the slow amplitudes are ordered asv1,Osu1d, v2

,Osu1
2d, while kVlQ=0 since the averaged part ofu=j+V

can always be included inj. Substitution of Eqs.sB5d and
sB6d into L and averaging overQ yields the following aver-
aged Lagrangianfto Osu1

4dg:

L = −
s

2
L0 −

V0

4
L1 +

V1

4
L2 +

K1
2

4
L3 + Ld, sB7d

where
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L0 = u0
4 + 3u0u1

2u2 + 3u0
2su1

2 + u2
2d + 3u1

4/8, sB8d

L1 = 2u0
2 + u1

2 + u2
2, sB9d

L2 = 2u0u1v1 + u1v1u2 + u1
2v2 + 4u0u2v2, sB10d

L3 = u1
2 + 4u2

2 + v1
2su0

2 + 3u1
2/4 + u0u2d + 4u0u1v1v2 + 4u0

2v2
2,

sB11d

and only the term with the relevantsslowd phase mismatch,
F=Q+j−wd1, is left in the driving part of the Lagrangian
after the averaging,

Ld =
«

2
su1 − u0v1dcosF. sB12d
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