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Excitation of multiphase waves of the nonlinear Schrdodinger equation by capture into resonances
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A method for adiabatic excitation and control of multiphadeband waves of the periodic nonlinear
Schrédinger(NLS) equation is developed. The approach is based on capturing the system into successive
resonances with external, small amplitude plane waves having slowly varying frequencies. The excitation
proceeds from zero and develops in stages, aé\arl)-band (N=0,1,2,..), growing amplitude wave is
formed in the(N+1)th stage from aiN-band solution excited in the preceding stage. The method is illustrated
in simulations, where the excited multiphase waves are analyzed via the spectral approach of the inverse
scattering transform method. The theory of excitation of 0- and 1-band NLS solutions by capture into reso-
nances is developed on the basis of a weakly nonlinear version of Whitham’s averaged variational principle.
The phenomenon of thresholds on the driving amplitudes for capture into successive resonances and the
stability of driven, phase-locked solutions in these cases are discussed.
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[. INTRODUCTION bation. The smallness of the drive term, however, does not
prevent finding a solution to this problem, if the desired ex-
citation process occurs during a sufficiently long period of
P+ i+ 2g|l/,|2¢,:0, o=+1 (1) time. In fact, we shall see below that successive use of
) ) ) ) ~ simple perturbing terms in the form of plane waves with
is one of the most important equations of nonlinear phy3|css|ow|y varying (chirped frequencies allows stable genera-
It describes a large number of physical phenomena in nonion of N-band waves of spatially periodic NLS equation
linear optics, plasma physics, and water waffes an intro-  with a desired number of phases. We believe that this ap-
duction to some of the problems sg). The discovery of proach opens a new window for applications in many sys-
the inverse scattering transfoift$T) method[2] and its ver-  tems described by the NLS equation.
sion for the NLS probleni3] allowed better understanding The physical mechanism in our approach involves capture
of the multiplicity of solutions of this important equation. into resonances and adiabatic synchronizatigphase-
However, only the most simple NLS solutions, such as planéocking) in the driven system. First applications of the
waves, cnoidal waves, and solitons, have attracted great anethod to extended systems included formation of weakly
tention of the physics community. More complex NLS con- honlinear plasma wavé$] and solitons of the Korteweg—de
structs, particularly multiphase waves (referred to as Vries(KdV) equation 7] by startingin resonance, as well as,
“N-band” solutiong4] within the IST approach remained 2- and 3-wave interactions in nonuniform meg9] both
inaccessible in applications. The reason was the difficulty oPn€nomena involvingpassage throughresonance. Later,
realization of very special initial conditions for formation of adiabatic synchronization was used in sine-Gordon systems
these solutiong5]. In the present work, a simple and, we [10:11. for generation of cnoidal and standing NLS waves
believe, realizable procedure of generating multiphase wav 2,13 and in fluid dynamic§14-16. Most recently, a simi-

of spatially periodic NLS equation is suggested. The ap_ar approach allowed formation of multiphase solutions of

proach can be referred to as pattern formation by synchronf—he Korteweg—de VriegKdV) equation[17] and Toda chain

; - ; ~ [18]. Here, for the first time, we apply the PFS idea to mul-
tzl?rtéc;ré(g:oi:?ﬁ The idea is to replace Eq1) by the per tiphase NLS waves. We shall see how the NLS system driven

by small amplitude, chirped frequency plane waves is cap-
i+ o+ 2012 =ef(x1), e<1 (2) tured into resonances, leading, at certain conditions, to a per-
sisting phase-lockingthe term waveautoresonancean be
used in this situationdespite the variation of the driving
frequencies. As the result of this synchronization, the solu-
tion evolves in the solution space of the unperturbed NLS
néquation, and new phases are added to the driven wave in
successive excitation stages. At the end of the process, the
solution arrives at the vicinity of a multiphase NLS wave,
having a prescribed set of wave numbers and frequencies.
The scope of the paper will be as follows. Section Il will
*Electronic address: lazar@vms.huii.ac.il illustrate our approach in numerical simulations. We shall

The nonlinear Schroding€NLS) equation

and, by starting from some simpleven trivial,#=0) initial
conditions, to find drive functionef(x,t) such that one
reaches a vicinity of the desired nontrivifl-band solution
of the unperturbed system in the process of evolution. Cou
terintuitively, our goal is to excite #&rge amplitude, non-
trivial NLS wave, say from zero, by applyingsmall pertur-
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use the spectral theory of the ISTI9] in this section for 3
interpreting the numerical results. Our theoretical analysis
proceeds in Sec. lll, by considering excitation of simplest, ;5|
plane wave(0-band solutions by synchronization. In the
same section we shall discuss a universal problem of thresh
olds for synchronization, characterizing the PFS paradigm in
this and many other applications. Section IV will be devoted <
to the theory of autoresonant excitation of 1-band solutions’s 1.5¢
by successive passage through two resonances. The excit £
tion of 1-band waves will proceed from generation of a large
amplitude plane wave by starting from zero as in Sec. ll,
followed by autoresonant formation of a 1-band NLS solu-
tion by passage through another resonance. The theory ¢  0-5[e—— o
this process will be based on a weakly nonlinear version of
Whitham'’s averaged variational princip]20] for autoreso- 9 ; ) s ) s )
nant wavegSecs. IV A and IV B. We shall also study the 00 0 200 TI‘]‘\(/)[(]Z: 600 800 1000
problem of thresholds on the driving amplitude for synchro- !

nization in this problentSec. IV O, as well as the stability FIG. 1. The evolution of the maximur| over the periodicity
of the driven wave(Sec. IV D). Finally, Sec. V will present  |ength in the three-stage excitation process of a multiphase NLS
our conclusions. wave (thick line). The time intervals of emergence of
N=0,1,2band solutions are shown by arrows. The numbers along
the line indicate the times of switching different drive terms on and
II. SYNCHRONIZATION BY PASSAGE THROUGH off. The thin line represents saturated excitation case when two
RESONANCES: NUMERICAL SIMULATIONS drives are present at a time in the second excitation stage.

Two drives

We proceed by presenting the results of numerical solu- . , ,
tions of Eq.(2) with a properly chosen right-hand siRHS) small_, this passage thrqugh resonance will create a growing
for excitation of N-band waves. The goal is to use simple @MPlitude 1-band solutiofsee our example below and the

initial conditions and generate approximately the following discussion in Sec. \which is continuously phase-locked to

unperturbed NLS solutiofsee Appendix A f1. . _
Next, at some excitation stage we switch off driyeand

YU=U(0,,0,, ...)exgi[£+V(0,,0,,...)]}, (3) replace it by a new chirped frequency drivé,
=exgli[mykox—[w,(t)dt]} (m,=2 in our examples below
creating a growing amplitude 2-band solution, as the new
driving frequency passes the next resonant valgie and so

on. By repeatedly applying this switching on and off driving
procedure with drives of form of a plane wavyenly one
drive is present at a time

whereU andV are 2r-periodic real functions oN-phases
0,=Kx-Qit, i=1,... N, wave number«; and frequencies
Q; are constant, whilg=Kox—Qgt (the externalphase ap-
pears in the complex exponential in E§) only. We shall
assume_-periodicity inx in the problem, so botly andf in
Eq. (2) are L-periodic inx, and all K;=n;ky, wheren; are

integers ko=27/L being the principal wave number.

Our numerical procedure for generatiNgband solutions efj=eex i{mjkox—f wj(t)dt} =eexplieg), (4)
is as follows. We start with zero initial conditions and solve

the perturbed NLS equatiof2), where the driving function
is a plane wavefy=exp(i[mpko—fwo(t)dt]} (we usemy=0
below, as an examplehaving slowly varying frequency

f’O(t):“’ZOr__aot' whereag is a constant chirp rate, andy  gegjred number of internal phases. We illustrate this proce-
=(mpko)” is the linear resonance frequency of the unper e in Figs. 1 and 2 showing a three stage excitation pro-

turbed NLS equation. Importantly sgm)=oc. This slow  cess |eading to a 2-band, focusifg=+1) NLS solution.

passage through resonancea0 will excite a slightly per- o simulations used a standard pseudospectral mégidd

turbed plane wavé0-band solution[12] with amplitude and  The number of harmonics varied up to 256. The accuracy

phasefexternal phase in Eq3)] controlled by the chirped a5 tested by increasing the number of discretization points

driving f_requency. WQ shall discuss this stage of excitation in, poth time and space.

Sec. Il in more detail. . Figure 1 presents the evolution of the maximum over pe-
When the amplitude of the 0'—band so[utlon reachegd, at riodicity lengthL (L= in the simulationsvalue of|y{=U

=t;, some valudJ(ty) = Ao, we switch off drivef, and apply  [see Eq(3)], while Fig. 2 shows the color contour map|ef

a new drive,f;=expli[mikox—fo()dt]} (M =1 in our ex- i three small time windows\t=5.2, at the ends of different

amples beloy where the slow frequency;(t)=wy,~ait  stages of evolution, denoted by numbers 1,2,3 along the

passes(at t=0) through another resonancey,=-20A3  graph in Fig. 1. We uses=0.02, all chirp rates;=0.01, and

+myko\ (Mykg)2—40A3 (see Sec. IV for detaijswith the ex-  three successive drives of fortd) with m;=0, 1, and 2.

cited O-band solution. When chirp rate, is sufficiently  Only one drive was present in each excitation stégae

where m; is an integer, while the driving frequenay;(t)
passes through the resonance with the wave excited in the
preceding stage, one can generatéNamand solution with a
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FIG. 2. (Color The spatio-temporal structure of the solution fgf in three small time windows around times indicated by numbers 1,
2, and 3 in Fig. 1 at different stages of excitati¢a). || =const equidistant contour lines at the end of the first excitation gthgeplane
wave solution. The color of each line corresponds to the valugygfon this line as shown in the corresponding color bar at the right. The
vertical lines illustrate spatially uniform, slowly time varying amplitude of the solutid82<|{ <0.84 in the chosen time window, as seen
in the corresponding color bar(b) |=const contour lines at the end of the second excitation gtagand solution || remains constant
along the direction indicated by the red dashed line in the figure. The internal phase of the solution remains constant alongcahis line.
|y/=const contour lines at the end of the third excitation stéyband solution |y is singly-periodic in time along two characteristic
directions of constancfred dashed lines in the figuref one of the two internal phases of the solution.

intervals[-200, 14Q, [140, 504, and[500, 90Q) and the at all stages of excitation, when two drives have been present
corresponding driving frequency passed a resonance with tr& a time. The observed saturation is due to instability of the
wave created in the preceding time interval, leading to thélriven solution and we shall discuss this instability fér
addition of a new phase in the solutigeee below. We  =0,1casedas in Fig. 3 in more detail in Sec. IV.

observe that the maximufy| increasesin averaggin every For further clarification of our multistage excitation pro-
new stage of excitation. Alsdy]| is nearly a constan®.83 cess, we have analyzed the numerical solutions by means of
in Fig. 2a), i.e., the driven solution comprises a slightly the spectral approach of the IST. Only a necessary minimum
perturbed plane wave at the end of the first stage of excita@f information about this method is presented below for
tion. In contrast, Fig. @) (the end of the second excitation completeness. It is knowfi9] that N-band NLS solutions
stage illustrates the emerging 1-phase solution, such thagan be constructed via a set of\e+1) parameters\, (the
|y]=U(®,) remains constant along the direction shown bymain spectrumand a set ofN variablesu;(x,t) (auxiliary

the red dashed line in Fig(R), i.e., along the characteristics spectrum. The main spectrum of the unperturbed NLS is
dx/dt=0Q,/K, associated with its phas®;=K;x—Qt. Fi- constant in time and, for the focusing NI(&= + 1), consists
nally, at the end of the third stadEig. 2(c)] one observes a of N+1 different complex-conjugate pairs in the complex
more complicated pattern, which is nearly periodic alomg  plane, while in the defocusing case=-1), \, are N+2
main directiongshown by red dashed linesThis indicates a real numbers. The auxiliary spectrum components are func-
2-phase solutionU=U(0,,0,), which becomes a singly- tions depending on space and time Wagphasesd, of the
periodic function of time along characteristic directions N-band solution. In other wordgy;=u;(©1,0,, ...,0y). If
dx/dt=,/K4, or Q,/K,, along which one of the two phases all A\, and «; and the value of) are given at initial timet,
remains constant. Finally, the thin line in Fig. 1 shows theand positionx,, then the corresponding-band solution can
numerical result for the same set of parameters and initiabe constructed by solving a set of first order ordinary differ-
conditions as above, but with drivg (at a constant fre- ential equations ik andt [19] (see Appendix A On the
guency present in addition tdf, in the second excitation other hand, given ahl-band solutiony at some timet, one
stage. We see that the amplitude saturates in this case and ttemn calculate the corresponding IST spectra by solving cer-
continuing variation of the driving frequency does not lead totain linear eigenvalue problems. The main spectrum of a gen-
a growing amplitude solution. We have found a similar effecteral solution of the periodic NLS is characterized by an in-
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FIG. 3. The evolution of five pairs of the main spectrum of the F1G- 4. The frequencies locking in the first two stages of exci-
driven solution shown in Figs. 1 and 2 in the complex plain. Thet@tion in Fig. 1. The frequencieS, , of the driven wave are found

segments 0-1, 1-2, 2-3, and 3-4 display evolution in subsequeﬁiia the main IST spectrum of the driven solutidal o~ wy (thick
time intervals of excitation of 0, 1, and 2-band solutions during the“ne) in the f'rSINEXC'_ta“On stage beyo”‘?‘ th? Ilnear_ resonaftce
three excitation stages indicated by the same numbers in Fig. 1. Ora9)- (P) o+~ w, in autoresonance thick linklue) in the sec-
can see the removal of degeneracy of an additional pair in the maiﬂnd excitation stage. The tilted straight lines show chirped driving

spectrum in each excitation stage, corresponding to appearance Ofrgquencies. The thin lines i@ and (b) illustrate dephasing of the

new phase in the solution. All other pairs of the main Spectrumexcited wave for the driving amplitudes below the thresholds for

remain degenerate. synchronization.

finite number of pairs of constant eigenvalueshowever, We illustrate these two phase-locking relations in Figs) 4
for the N-band solution, onlyN+1 such pairs areondegen- a_nd 4b). The spectral theory connects bgtween the frequen-
cies and wave numbers of tiNeband solutions and the IST

erate and needed for construction of the solution as de- a0 N=0and 1_th ; "
scribed above. Thus, counting the number of nondegenerafPectrd4l- In cases\=0and 1, these connections are simple
ee Appendix A For example, ii]=a;*ib is the relevant

pairs of the main spectrum, allows to diagnose the number d i of th : f the ol
phases in the corresponding solution. We use this idea in OL{}on egeneratpair of the main spectrum of the plane wave

application as follows. We solve the driven NLS equation N=0), then
numerically and view our numerical solutio@t a given Ko=-2a;, Qq=4a’-2b7. (5)
time) as the initial data for some solution of the unperturbed o . ] .
NLS. From this data we calculate the main spectrum via a 1he driving wave has zero wave number in the first exci-
discrete approximation of the scattering probléa2]. We  fation stage in our example in Figs. 1-3. Therefttg=0 in
expect to sedl+1 nondegenerate pairs in the main spectrunin® excited solution, and, from E(p), &, =0 (this result can
and many nearly degenerate pairs, if our driven solution i¢€ seen in the spectrum in Fig. 3 between points 0 gnd 1
near some large amplituds-band solution of the unper- Therefore, the ab(_)\_/e-mentlonetzj phase lockiag:; ¢y, is
turbed NLS. Figure 3 shows the evolution péiththe com-  €quivalent to conditiol)(t) =-2b7~ w(t). Fig. 4@ shows
plex plang of the main spectrum corresponding to the solu-the numerically found evolution of +£ (full thick line) and
tion of the driven problem shown in Figs. 1 and 2. Thecompares it with the chirped driving frequengpotted line.
numbers 0, 1, 2, and 3 in the figure show the location of théOne observes the continuing phase lockiagtoresonange
main spectrum values at different times of evolution reprein the system beyond the linear resonaftce0). The phase
sented by the same numbers in Fig. 1. One can see that a né@¢king is destroyed and), stays constant after the first
pair of values in the spectrum becomes nondegenerate atage drive is switched off dat=140. One can also see slow
each stage of excitation and the final solutian time indi-  0scillating modulations of)(t) in autoresonance around the
cated by number 3 in Figs. 1 and B a slightly perturbed linearly decreasing averaged val(ie latter follows the
2-band solutior(its main spectrum hathree nondegenerate variation of the driving frequengy These modulations com-
pairs of complex valugs prise another characteristic feature of autoresonance in the
Next, we illustrate that our driven solution satisfies par-system(see Sec. I)l. Next, forN=1, with two nondegenerate
ticular phase-locking relations with the driving waves at dif- pairs of the main spectrum\; ,=a; ,+ib; ,, we have(see
ferent excitation stages. For example, in the first stdiyge  Appendix A
band, plane wave solutipnthe phase locking is between the _ _ —
driving and the external phases, i.é5 ¢qo. In contrast, in Ko=2Relpa)) =8, Qo= 25(Rely), ®
the second stagéexcitation of the 1-band solutipnthe  and Q,=sK;, wheres=2(a;+a,), q:4(a§+a§+a1a2)—2(b§
phase-locking involves a triad of phases, i&£:01= ¢g. +b§), and(---) denotes averaging over one oscillation of the
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internal phase. Since, agaiky=0 andK;=k, (the same as 3— ‘ ‘ 4
the wave number in the second stage driveee have (@)

&
2(Re(y))=s. Therefore, 25l N3 3 I/__@
2¢ N=1 ]

Qo=-2(b] + b5+ 2a13), 0 =2(a;+a)k. (7) N=2

We test the phase-locking in the second excitation stage ir
Fig. 4b), by comparing,+(), found from the main spec-
trum via Eqs(7) with the driving frequencyw,(t). Again, we
observe efficient phase-locking and the characteristic au-8

toresonant oscillations around linearly varying average value ;| y- |
of Qp+Q4 in Fig. 4(b) for timest>390, i.e., beyond the 5
linear resonancéw,=w;4; see Sec. Y. This phase-locking - ¥

discontinues att=500, as the second driving wave is 0.5

=
% 1.5¢ N=0 ]
N3

switched off. We shall present the theory of the phase- '3hx_
lockings inN=0 and 1 stages in Secs. Ill and IV. () et ‘ ‘ - ‘ .
The frequency-locking diagrams of the type shown in Fig. 0 500 1000 0 500 1000

4 allow us to demonstrate another important phenomenor, TIME, t TIME, t

associated with Our.e.XCItatlon. scheme, i.e., the existence of FIG. 5. Excitation of the multiphase solution via synchroniza-
f{hresholds on the driving amplitudes for Capturlng_the SySter[ﬁon in the case of defocusing NLS equation. The parameters and
into resonance. We have repeated thg cal_culatlons for tr\ﬁitial conditions are the same as in Fig. 1, but the signs of the
same parameters as above, byt 0.009[in Fig. 4@)] and  yyiving frequency chirp rates are opposite and an additi¢foarth)
£1=0.007 [in Fig. 4b)], which are just below the corre- gycitation stage3-band solution with ky=—kg, £5=0.02, andas
sponding threshold amplltudeﬁag’l=0.0092,0.0072, S€e =-0.01 in time interva[900,120Q is added in the simulatior(a)
Egs.(12) and(50) below] and show the results by thin lines. maximum |4 over periodicity length versus timéb) the succes-
One can see that the phase locking in both cases discontigive opening of 4 gaps in the main spectr(ati rea) as one passes
ues, shortly beyond the linear resonances. We shall find exfifferent resonances in the process of evolution.

pressions for these thresholds in Secs. Il and IV.

Our final illustration of PFS in the NLS system shows the
case of the defocusing NLS equatiarn=-1). We performed
simulations with the same parameters for the defocusing case iU+ (= <>+ 20U U = & expli(x — ¢o)}
as in Figs. 1-4 but reversed the signs of the driving fre
guency chirp rates and added an additioffalirth) excita-
tion stage withk,=-kg, £3=0.02, anda3=-0.01 in time in-
terval [900,1200. Figure %a) shows the evolution of the Ui=-esind, 9
maximum |¢| until the arrival at the final 3-band solution.
The successive emergence of four nondegenerate pairs of
main spectrum components in the defocusing NLS system is
illustrated in Fig. 8b). The main spectrum is real in this case _ 5 o )
and Fig. §b) shows the actual time evolution of the spec- Finally, we choosewg =« (the driving perturbation passes

trum, where each new phase in the solution corresponds §1€ar resonance at0), correlate the sign of the Chirezrate
the removal of one degeneracy. a=0]a| with o, and introduce new time variable=|a|*4,

and amplitude A=2Y?|a|™4U. Then Egs.(9) and (10) can

be combined into the following equation fdr=A exp(i®):

lll. EXCITATION OF PLANE NLS WAVES AND W+ (W2 - )W = 4, (11)
THRESHOLD PHENOMENON 7

where amplitudeJ >0, and phas&=«x- x(t) is real. Then,

‘or, by separating the real and imaginary parts and defining
phase mismatckb = ¢y—y,

D, = 0o — K2 — at + 20U% - S cos®. (10

_ _ _ ~ wherep=23a|™%. Remarkably, thisingle parametex 7)
The starting point of our theory is the problem of excita- gystem, describing capture into resonance and synchroniza-

tion and control of plane NLS waves by synchronization.ion in the present application, also characterizes synchroni-
This problem was first discussed in REf2], but the issue of  ,5tion of 1-band NLS waves into resonarisee Sec. IV,

thresholds for synchronization by passage through resonangg,q related PFS problems in plasni@s], fluid dynamics
was raised for the first time later in seemingly unrelated{14] planetary dynamic§24], and atomic physic§25,26).
nonneutral plasma experimeri@3]. Here, we focus on the Th,s Eq.(11) is a fundamental equation of the PFS para-
thresholds for capture of plane NLS waves into resonance.gigm. In studying passage through the linear resonanee at
Consider the driven NLS system, =0, we seek asymptotic solutions of this equation at large

i+ o+ 20|20 = & expli[ kX — () TV, 8 positive 7 subject to zero initial condition at large negative

tht thoct 2011 = & xpliliox = doO} ® The analysis showésee discussion of a similar problem in
where k=mlg and the driving frequencywy=d¢y/dt=wq, [14]) that two such asymptotic solutions may emerge after
—at is chirped linearly in time. We seek a time modulated passage through resonance, i.e., eitagconstant amplitude
plane wave solution of Eq(8) of form ¢=U(t)expié), (bounded solution ¥=A,exp-ic/2), or (b) the un-
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bounded solution\¥'= 171’2: The phase mismatcih=o7? U — Uy + 02U - 20UB+ & cod gy - 6) = 0. (16)
between the driven and driving waves for the bounded solu- _ o _
tion grows quadratically in time. It is this increasing mis- This system can be also obtained from the variational prin-

match, which leads to the amplitude saturationAgtafter ~ ciple

passage through resonance. In contrast, for the unbounded

solution, the mismatch remains constégither =0 or ), 5{[ f dxdtL(U,U,,U,, 6, Gt,t)> =0, (17)
meaning a perfect phase locking in the driven system, as the

amplitude grows continuously beyond the linear resonancehare Lagrandiam = L.+L

In other words, the driving frequency shiftis balanced by grang or L

the nonlinear frequency shift’|? in Eg. (11) continuously, 1, 1

so that the system stays in resonance despite the variation of Lo= E[Ux + U2(9>2< +6)]- EUU“’ (18

the driving frequency. This is the desired autoresonant solu-

tion in the problem. But how the system chooses between thendL;=eU cogkox— ¢, - 6). Since the unperturbed Lagrang-
bounded and phase-locked, growing amplitude states aridn L, depends ord,, 6, but not oné (@ is the potential one
what determines the phase mismatch valueO or 7 in the  can conveniently approach our problem by using Whitham'’s
latter case? One finds that the transition of the system taveraged variational princip[@0]. Generalization of this ap-
autoresonance is controlled by single paramejein Eq.  proach to autoresonantly driven two-component fields was
(11), while ® asymptotically approaches 0 ar depending developed in[27] and applied to some NLS cases|it?2].

on the sign ofo. Numerically, the transition occurs fop  The method describes slow space-time modulations of
> n,»,=0.411[26] (a more physical line of argumenfd4]  driven, rapidly oscillating fields and uses the small slowness
using a dynamical picture of resonant interaction yields gparameter associated with these modulations in developing a
slightly higher approximate threshold valuegy,~37%4  perturbation theory, yielding evolution equations of relevant
=0.438. By returning to our original parameters, we obtain slow field variables. In the NLS applicatidd2], one writes

the threshold driving amplitude the solution as

e =0.291al¥4. (12 Y=U(0,)expli[é+V(O,1)]}, (19

For > gy, the system is always in autoresonance, i.e., itSyhereé=Kqx—fQo(t)dt, bothU andV are 2r-periodic in the
amplitudeU grows ast®? at large positivet, while phase fast phase variabl®=K;x—[Q,(t)dt, K;=mk,, while the
mismatch® =0 (for o= +1) and 7 (for 0=-1) in average. explicit time dependence it andV, as well as in frequen-
The theory[14] also shows that at finite times, in addition to ciesQ 4(t) is assumed to be slow. Note that Egj9) has the
the smooth averaged evolution described above, both the afym of a slowly modulated 1-band solutisee Eq(A6) in
plitude and the phase mismatch perform slow oscillationgg\ppendix Al. By Whitham’s approach, instead of working
around the average with characteristic frequensgaling as  \yith the exact Lagrangian, one averagiesver ® between 0

= 2\aU = \m (13) in_dAZT, defining the averaged Lagrangi_a‘n:<L>@. Then

=A(P, &, &,0,,0,,P) becomes a function of a sét of

One can see the predictét? growth of the amplitude, as slow dependent variablesee Appendix B as well as of
well as the slow autoresonant oscillations in our simulationphasest and ©, enteringA either via the slow frequencies
results in Figs. 1 and 4 in the fird-band stage of excita- Q1 and wave vectors or the slow phase mismatchl2]
tion. This completes our discussion of passage through resgwe shall see below thab=0 +&— ¢y, in the case of inter-
nance and synchronization of plane NLS waves and we prces). LagrangianA is used in the averaged variational prin-
ceed to synchronized 1-band solutions. ciple

IV. AUTORESONANT EXCITATION AND STABILITY OF
1-BAND WAVES dxdtA(P, &, &,0,,0,P) | =0, (20)

A. Reduced, weakly nonlinear problem where nowx andt are slow space-time variables. Then, to

Consider the driven problem in the second stage of excithe desired order of our perturbation scheme, variations with

tation in Fig. 1, respect to all independent variabld, £, 0, yield a set of
i - _ slow evolution equations describing capture into resonance
1+ Yo+ 2019179 = & explieq), (14 and synchronization in the problem.

where @y =mkox— 4 (1), and dey/dt=wy(t)=wy,—at. This Here, focusing primarily on the initial autoresonance

equation is similar to Eq(8), but, instead of zero initial Stage describing the threshold for synchronization in gener-
conditions, we proceed from the plane wave solution excite@lind 1-band solutions, we shall adopt a simplified, weakly
in the first stage, as described in Sec. Ill. We shall ”mit_nonlmear version of the _averaged yanano_nal prl_nC||c_)Ie. The
discussion tan=1 case for simplicity. We write the driven 1dea is to expant) andV in Eq. (19) in Fourier series ir®),

solution asy=U exp(if), U>0, Im =0, and separate the keep the lowest significant number of terifzero and first
real and imaginary part’s i EC,FL4)Z ’ two harmonic} in the series, substitute the resultlin and

calculate weakly nonlineaA by averaging over®. The
U+ 6, U+ 20U, + e sin(pyq — 0) =0, (15) proper expansion issee Appendix B
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U = ug+u; cos® +u, cos 2, (21

V= -yp,8in0 -v,sin 20, (22

where we assume the following ordering of the slow ampli-
tudesu; andv;: uy may be ofO(1), |uy|, [v4|<1, andu,, v,
~O(uf). With these definitions, the averaged Lagranghan
depends on seven independent varialftegug ; »,v1 o}, O,
and ¢ [we shall assumé=—[Q(t)dt in this applicatiorj and
becomes, t@(uf) [see Eqs(B7)<(B12) in Appendix B,

Q Q K2
0 1 1A3+Ad,

A=- —AO A A 23)
where
Ag = Ug+ 3ugUiiu, + 3u3(u + u3) + 3u$/8, (24)
Ay =205+ Uf + U3, (25
Ay = 2UgUv + U gUp + v, + 4UgUouy, (26)

Az = U2+ 403 + v3(U2 + BU2/4 + Ugly) + 4UgUqv v, + 4UZ03,
(27)

and the driving term

Ag= gs cosd, (28)

wheres=(u; —Ugp4) and®=0 +£&—py;.

B. Variational equations

At this stage we write the variational equations in the
problem. We start from variation in EQR0) with respect to
Uo. This yields[to O(u3)] expression

2u(2) == O'QO - (29)

and, to zero ordeny3,=—(a/2)Qq0 Similarly, variations with
respect tau; andv; give lowest ordelinearn equationgwe
shall go to higher order in these equations later

2
3u;

(K2 = 4oudg)u; + QqUow, =0, (30)
Qyliy + Koy = 0, (31)
yielding linear dispersion relation
0%= KE(K] - doud) (32
and lowest order connection
v =—Lu, (33)
Uoo

where p=Q,o/K3=\1-40¢ and {=(ug/K4)? are important
parameters in the problem.

Next, we take variations with respect tg andv,. This,
after use of Eq(393), to O(u"{), results in

(-

Q 3
% +2K% - 30 Ugo) Uz + QgoUov2 = ?Uuooui, (34)

PHYSICAL REVIEW E 71, 036206(2005

P P 2
—Uu,+u =——Uuj. 35
22 ooV2 8 Uoo 1 (39
We solve these equations fay andv,:
1\ u?
U,=|(20¢--|—, 36
> ( ol 4>Uoo (36)
1 u?
=pl = - — 3
U2 p<2 0[) U(2)0 (37)

Now, we take variations with respect tg andv, again,
but go to higher order inu; and include the driving terms
[compare to Eq9.30) and(31)]. This, after use of Eq$33),
(36), and(37), yields

(Kf-

QO - 6(TUS)U1 + QJ_UOU]_ + Nl =g cosP, (38)

Q]_UOU:L + Kiugvl + N2 == (39)

where Ny =12U3(p?/32,- ¢) and N,=(3Q40u3/8ugo) (1 - ).
Then, we use E(q39) to eliminatev, in Eq. (38) and obtain
higher order dispersion relatideompare to Eq(32)]

SUOO COS@

Q
03~ Ki(KE +200) +quf = =20
1

(L+p Heosd, (40)

whereq=12(2u3,—- oK?). Finally, we take variations with re-
spect to® and ¢, to get two slow evolution equations

(9A16Qy), = gs sin® (41)

and

(0A13Q), = %s sin®. (42)

These equations yield the conservation law
8A/&Qo - &A/&Ql i 2U0ull}1 + 2Ué + U% = const, (43)

which, upon use of Eq:33) and zero initial conditions on,
anduv,, gives

U= udy+ (p— 1/2)u3. (44)
Then, from EQq.(29),
Qo= - 20{Udy+ (1 +p)u3]. (45)

The last two equations can be used in Ef) to rewrite it as

02— 02 +ru?= 1°(1+ p Heosd, (46)
1

wherer =4K2(6y- 20+ ap). Finally, we use Eq(46) to find

the approximate expression for the frequency sl
=Q,-Q4p near the linear resonance:

e _20
p

5le - 2(
P

2, € -1
+o|ui+ 1+ cosd.
0') 1 2U1( P )

(47)
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0.5 ' ' ' ' ' Ugo<<1 in our focusing NLS exampléo=+1) for stability.
Generally, a very good agreement between the analytic pre-
diction and simulations is observed except in the vicinity of

0.4r the spike in the analytic result ab,=0.96 (p=0.27) in the
|_—5 | focusing NLS case. We notice that, at the location of the
03l | spike, coefficient= in the lowest order nonlinear frequency
’ A shift in Eq. (48) vanishes. Therefore, we conjecture that the
Bt difference between the simulation and analytic results in the
A L. . . .
0ok vicinity of the spike can be explained by the necessity of

adding higher order nonlinear frequency shifts in the theory.
Nevertheless, because of algebraic complexity, inclusion of
0.1 | higher than second order nonlinear frequency corrections
within our perturbation scheme remained outside the scope
of the present work. Finally, we observe that, as for 0-band

0 s . ) ) ‘ s solutions, the amplitude of the autoresonant 1-band solution
0 0.2 04 0{16 0.8 1 1.2 has small oscillating modulations seen in Fig. 1, having char-
00 acteristic frequencycompare to Eq(13)]

FIG. 6. The threshold:!" for synchronization of 1-band NLS
waves versus parametag, Numerical thresholds for focusingr
=+1, triangle$ and defocusindo=-1, circleg 1-band NLS solu-
tions are compared with analytical predictions, EfO) (solid
lines). Note thatugy<1 for stability in the focusing case in our
example. The spike in the analytic resultigy=0.96 (p=0.27) in Now, we discuss instability of 1-band solutions in the case
this case corresponds to vanishi@gu?) frequency shift. Higher when two resonant drives are present at a time, as observed

order nonlinear frequency corrections must be added in the theoryy our simulations(see Fig. 1. We consider the driven sys-
to explain deviation from the simulation results in the vicinity of the tem [compare to Eqs(8) and (14)]
spike.

v=\29/alA=e(l+ph)|F|u;. (51)

D. Instability of doubly resonant 1-band solutions

i+ e+ 20]Y2= g expliogo) + 1 eXplieq), (52)

where, as in Secs. lll and IV A=V Cpgpo=—dot), @xu
=kox— ¢y (t) anddey 1/ dt=wq 5, but both resonant drives are
present at a time. We assume that autoresonant excitation of
0-band(spatially uniform) solution takes place first, reaching
amplitude|4 =u, at some timet; as described in Sec. lIl. We

= shall also assume that &t the system resonates with the

Oi=w - Q- Qp=—at+ aF(p)uf— — cos®, (48) second drive, so that one expects excitation of a 1-band so-

2uy lution beyond this time as described in Sec. IV A. However,
where F=4-p-p™ andz=¢e(1+p~1). We supplement this in contrast to Sec. IV A, we do not switch off, so both
equation by Eq.(41), which can be written aguguv,); drives resonate beyortgl Our goal is to investigate stability

C. Threshold for synchronization

At this stage, we use Eq&45) and(47) to write the evo-
lution equation for the phase mismat®h Assuming passage
through linear resonance &t0, i.e., w;=Qqp+Qgo— at, we
obtain

=&(1+p)u; sin® or, to lowest order, of this doubly resonant 1-band solution via the Whitham’s
approach.
Uy =—(&/2)sin®. (49 We use representatidd9), ¢=U(0,t)exdi(é+V(0,1))],

with definitions(21) and(22), covering both 0- and 1-band
solutions in calculating the averaged Lagrangiann the

— ; 2| -12F 2 = 1=r1/2), |-314 ;
;g'atéﬁf'?eep‘ d;|ce¥||1 delr?l,a?';tzj?elz— A|g| i (,Dz)in_(lj_rl]r;tr:o%uze problem. ObviouslyA has the same unperturbed part as in
w piex dep varl =A EXPID). » E0S. Eq. (23), but a more complicated driving terpgompare to

(48) and (49) reduce to Eq(11) for . Consequently, we

. o Eq. (29)]

again encounter the characteristic threshold phenomenon

(see Sec. I, i.e., » must exceed 0.411 for capture into reso- e

nance and subsequent synchronization. By returning to our Ag=ggUy cosdy + S cosd,, (53
original parameters, we find the threshold driving amplitude

for synchronization: where ®y=¢- g0, P1=0O+E- g1, S=~u;(1+p) and both

0.822a% phase mismatcheb, ;, are assumed to be bounded and slow
stlhzw, (500  (synchronization assumptipn The variational amplitude

(L+p)[F| equations(41) and (42) of Sec. IV B in this case transform

where |F| replacesF to includeF <0 case. Figure 6 shows into

this threshold versusgy, (solid lineg and compares it with

the results of numerical simulatioffisiangles fore=+1 and <}U0U101> - ﬁul(l +p)sind;, (54)

circles foro=-1) in the cas&,=2, anda=0.02. Note that 2 ¢ 2

Now, we focus onF>0 case(i.e., 0.27<p<3.73, seta
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2003, — wg + 40UgdUp + 30U3 =0,

1 1
(—u§+ —uf) = — eqUp SIN®g — (1 +p)sind,  (55)
2t M) 2

or, by using lowest order relatigi83) and combining the two 20U~ Qo= w1+ 4oU(1 +p ) dUg + 30(1 ~ p)Us = 0.
equations, Then, by linearization in Eq$54), (55), (62), and(63), one
e obtains a system faoku, , andAd, ;
Uy ==~ (L +psiny, (56) e
Aug = - 71(1 +p HAD,,

u
Ugt = — &g SINPy + Zl—ul(p‘l—Zp— 1)sin®,, (57) ™
0 AUO[ =—-0 SoAq)o + Sl—_l(p_l - 2p = 1)A(I)1:| )
where, as beforgp=Q,¢/ KS. We also add variational equa- 4ug
tions (29) and (40), valid in the two drive case, i.e.,

ADy = ol 4 + 6u;Au, ],
QOZ—U(ZUS +3Ui)a (58) ot = 0] 4UgpAUg + 6U AUy |

— -1 — 1L
02— KA(KZ+200) + 12203 - oK) =0,  (59) Ay = of4og(1 + 7)Ao + 60(1 ~ p)urAuy .

We seek solutions of this system in the forhug, Ady,

where, assuming sufficiently large excitatiofs();o/2u, ~exp(—ivt). This yields the characteristic equation

<1), we neglect the driving term in E¢40). Next, we use
Eq. (58) in Eq. (59) to write (-1 (#-15)-b=0, (64)

Qi - Ki(Ki - 40’“(2)) + 6(4U§ - U'Ki)ui =0, where V(Z)=480u00, Vizslil(l +p H(4-pt-p), and b
=8ege1UpUr (1 +p ) (p+p 1+2). If one of the driving ampli-
tudesgg ; vanishes, the characteristic frequencies beceme
=1p,1 in accordance with Egqs(13) and (51). When both
drives are present, the characteristic equation yields two so-
Qo= — 0(2u3,+ 4ugedu + 3U3), (60) lutions

1 1
4ou 2_ =02, 2 [202, 22
Q= Q- :00&10+30pug. (61) Vi_z(V°+V1)i 4(V°+V1) e (65)

Finally, we use Eqs(60) and (61) to write evolution system WNerec=12soz;uogy(1+p+p™"+p7%). One nyi in Eq. (65)
Py=wy-Qy and Py=w,-0,-Q, for the phase mis- IS always negative because of the positivenes.ofhis
matches, means instability, i.e., dephasing and saturation of the driven
solution, as observed in numerical simulations with two
Doy = 203 — wy + 4aUgedUg + 303, (62)  drives present in the second excitation stage in Fig. 1. This
completes our analysis of autoresonant 1-band NLS waves.

and seek solution foug in the formuy=ugy+ duy, whereugg
is the value at the linear resonance dfah|/ugy<1. Then,
upon expansion in Eq58) and in the last equation,

Dy, = 20050~ Qo= wy + dalgg(L + p 2 dUg + 30(1 — p)ui.
(63 V. CONCLUSIONS

Equations(54), (55), (62), and(63) comprise a complete set (a) We have suggested a method of excitation and control
of coupled ordinary differential equations describing evolu-0f N-band solutions(N phase wavesof the nonlinear
tion of duy, Uy, and®, ; in the two drive case. The analysis Schrodinge(NLS) equation in the framework of pattern for-
of this system of equétions follows next. mation by synchronizatiofPFS. The PFS idea, in general,

We seek solutions of Eq¢54), (55), (62), and(63) of the  is based on capturing the system into resonances with exter-
form dUg=dUg+AUg, Uy =Up+Aly, P 1:(30 +Ady ;, where nal driving perturbations having slowly varying frequencies

' L T = and/or wave vectors. In the present application, we have con-

Aup , andAd, , are small and oscillating, while, ; and®o1  gidered spatially periodic NLS problem and successively per-

are smooth, slowly evolving average components of the COfg,ipeq the NLS equation by plane waves having different
responding dependent variables. We shall assumedhat  wave numbers 2m/L (m being an integer ant the period-
are near zero otr, for o=+1 or -1, respectively. We shall icity length) and slowly varying frequencies. Each frequency
also assume that the averaged components are determinedgassed through a resonance in the system. The perturbing
the slow quasiequilibrium of Eq$54), (55), (62), and(63):  waves were arranged so that only a single drive was present
o £y o at a time.
Uy=——=(1+p Hsind,, (b) The suggested excitation scheme started from zero and
2 excited a spatially unifornt0-band solution first, by passage
_ through resonance with a small amplitude chirped frequency
- __ i W P oscillation. The solution was continuously phase-locked
o=~ o Sin o + 4u_O (= 2p = Lsiny, (synchronizegl with the drive despite the variation of the
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driving frequency. The amplitude of the wave increased imapplication of the method can be found elsewher®,19.
the process of evolution to continuously match the nonlineahis appendix presents only minimal information from the
frequency shift of the driven solution to that of the driving IST theory, necessary for our analysis. It is kno\8] that
oscillation. Such nonlinear, automatically synchronized evoN-band NLS solutions can be constructed from a setMf 2
lution of a wave is usually referred to as wave autoreso-+2 parametera, (the main spectruinand a set oN vari-
nance. ables uj(x,t) (auxiliary spectrum The main spectrum is
(c) We have switched off the uniform drive at some exci- constant in time and, for the focusing NI(&= + 1), consists
tation stage of the 0-band solution and added a new travelingf N+1 complex conjugate pairs, while in the defocusing
wave perturbation with a slowly chirped frequency. Passagease(o=-1), all \ are real. The auxiliary spectrum compo-
through resonance with this perturbation yielded autoresonents are functions depending on space and timeNia
nant excitation of a 1-band solution. Next, one could agairphase®,=Kx-Q,t of theN-band solution. In other words,
switch off the drive and replace it by another plane wavey, = ui(0,,0,, ...,0y) is a 2r-periodic function of its argu-
with a different wave number and chirped frequency and Sonents. If all\, and »; and the value ofy are given at initial
on. This process allowed autoresonant excitation of 2- an@ime t, and positionx,, the correspondindN-band solution

higherN-band solutions. Our approach was illustrated in nu-can be constructed by solving the following set of evolution
merical simulations, where the spectral analysis of the ingquations inx andt [19]:

verse scattering transform method for a periodic NLS system

was used for diagnostics. - Zin[HE’:\IIZ (e = )\k)]llz

(d) We have studied excitation of spatially unifor(@- Mix = , (A1)
band solutions by passage through resonance in more detail. H#j (= )
This problem vyields a universal single parameter ordinary
differential equation(11) characteristic of many other reso- 2N+2
nantly driven wave applicationGutoresonant excitation of it :( > A= 2> Mm) Kix» (A2)
1-band solutions, for exampleThis equation describes the k=1 m# |

threshold phenomenon in autoresonant systems, i.e., the ex-
istence of a critical value of the driving amplitude above g2 \2
which the capture into resonance is guaranteed. This critical id; In l/f=§ > A
amplitude scales ak|®*, @ being the driving frequency k=1
chirp rate.

() We have also studied autoresonant excitation of
1-band solutions via a weakly nonlinear version of the
Whitham'’s averaged variational principle. This approach al- 2N+2 N
lows to reduce the fundamental equatidd) for this prob- igIny= > \-22 uj, (A4)
lem. The threshold amplitudes predicted by this theory were k=1 j=1

in a good agreement with simulations. It was also shown, b{g\fhere —+1 depending on which sheet of the Riemann
using the Whitham'’s approach, that simultaneous presence gi== )
g bp P surface defined byP(2)]2=[TI24(z-\,)]¥? the variable

two drives in the process of excitation of 0- and 1-band so-"" ) )
lutions results in instability, as observed in numerical simu-%i S on. Formally, the last two equations can be written as
lations. _ N iaIn ¢=Vy(®), idIn¥=Vy0), (A5)

(f) Our analytic theory was limited to autoresonant 0- and _ o
1-band solutions. Nevertheless, numerically, we have obWhere®@=[0,,0,,...,0y], whileV, ,are 2r-periodic func-
served successive excitationdfband waves wittN>1 for ~ tions of all N arguments. Then, by writing/=U expli®),
both the focusing and defocusing NLS systems. The theorym(U,®)=0, we find evolution equations
of such synchronized adiabatic excitatiofp@ssibly within _ _
the IST approach particularly the theory of thresholds for GInU=ImVy(@)],  dcIn U =ImV,(®)],
capture into resonance, as well as applications to other sysnd
tems exhibitingN-band solutiongsine-Gordon equation, for _ _
example seem to comprise a set of interesting goals for fu- ©=-R4V,(@)],  Dx=-ReV,(0)].
ture research in the field. Therefore, the gener&l-band solution can be written as

ACKNOWLEDGEMENTS P(x,t) =U(@)expli[ £+ V(O)]}, (A6)

This work was supported by Israel Science Foundatiowhere bothU and V are real periodic functions of al®
(Grant No. 187/02 INTAS (Grant No. 03-51-4286 and components, while the frequency and wave number associ-
RFBR (Grant NO. 03-02-16350 ated with the external phageare

APPENDIX A: FREQUENCIES OF 0- AND 1-BAND Q= - &=(ReV1(0))g, (A7)
SOLUTIONS VIA IST APPROACH

{50 ()

>k

+42 ik, (A3)
>k

The IST is a convenient method for describiNgband Ko = &=~ (R&V2(@))e, (A8)
solutions of the periodic NLS equation. The details of thisand(...)e means averaging over a,.
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Now, we apply these results to casNs0,1(c=+1). possesses two constants of moti&¥Ug(Lg)y+Ve(Llo)y
There exists only a single nondegenerate pair of main spec-L, (“energy”) and M:(LO)VG):[ZKl(K0+ K,Ve)—Q,]U?
trum components, say; =a; +iby, for N=0 case. Then, from (“momentum’) and, therefore, is integrable. Now, one can
Egs. (A3) and (A4), V,=4a%-2b?, V,=2a,, and, therefore, expressVy in terms ofU andM
y=Ugy exp(i£), whereUy=const, while the external phage
=Kpx—Qqt+ &, &=const, where - QKo M

= or? 2()2°
QO = 4a§ - 2b2, KO == 2a1 (Ag) 2K1 Kl 2K1U

(B3)

In N=1 case, the solution has the forg=U(®)expi[é  which, upon substitution into the expression Bryields a
+V(®,)], and there are two pairs of nondegenerate, complexne-degree-of-freedom problem fat, which can be inte-
conjugate componentsjzzalvziiblyz in the main spectrum grated in quadratures. This problem describes oscillations of
and the corresponding single auxiliary spectrum componerit in a one-dimensional quasipotential and we viéwas a

mq. Then, from Eqs(A3), (A4), (A7), and(A8) we find canonical angle variable of these oscillations. ThépandV
via Eqg. (B3)] in the unperturbed problem becomes a
Qo= 4a2 + a3+ a,ay) — 2(b3 + b3) — 4(a, + ay)(Reuy), 2m-periodic function of®. In the presence of forcing in our

(A10) application,E, M, as well asf), ; become slow functions of
time. The evolution of these slow variables is described by
Whitham’s averaged variational principle,

Ko=—2(a; +ay) + 2(Reuy). (A11)
At the same time, EqA2) yields the phase velocity associ- 5<f f dXdtA (E,M, Ko, 0o, K1, Q q))> =0 (B4)
ated with the internal phase S ORRe L ’

QK =2\ =2(a; +ay). (A12)  where the averaged Lagrangidnis obtained by averaging
L=Ly+L, over one period, 2, of the fast angle variabl®,
Thus, if wave numberk, andK; of the 1-band solution are keeping the slow time dependenceligy, fixed. The objectd
known, Egs.(A10)—(A12) yield the associated frequencies in the averaged Lagrangian is the phase mismédeh®
g and (), via the relevant nondegenerate pairs of the main-¢— ¢, in the case of interegtassumed to be slow in the

spectrum. phase-locked solution. Variations in E&4) with respect to
E, M, O, and¢ yield the desired slow evolution equations in
APPENDIX B: WEAKLY NONLINEAR AVERAGED our driven problem. This is the essence of the fully nonlinear
VARIATIONAL PRINCIPLE Whitham’s approach[12] to excitation of synchronized

1-band NLS waves. Since the problem of thresholds in the
We describe our driven NLS system via variational prin-present application is a weakly nonlinear phenomenon, we
ciple (17) shall use a weakly nonlinear version of the Whitham’s
method.
In the weakly nonlinear case we writsee Eq(21)]

5<JJdxdtL(U,UX,Ut,GX,Ht,t))=0, (B1)

U = up+ U, cos® +u, cos B, B5
where Lagrangia.=Lg+L4, its unperturbed part is o 2 (B5)
1, o wherevu; are slow amplitudes ordered ag~ O(1); |u,| <1,

Lo= E[UX + U2+ 6)] - §U4’ (B2)  andu,~O(u?). Then, from Eq.(B3), the weakly nonlinear

form of V is

andL;=eU cogkox— ¢, — 6) represents the driving perturba-

tion. The Whitham'’s approac20] to the problem is a per- V=-v,8in0 -v,sin 20, (B6)

turbation expansion based on representing solutions of our

driven system as slowly modulated solutions of the unperynere the slow amplitudes are ordered s~ O(uy), v,

turbed system. To this end we wrifgé2] U=U(®,t) and 6 ~O(u§), while (V)¢ =0 since the averaged part 6f¢+V

=£+V(0,1), where O0=Kx—[0;(t)dt, Ky=mky, £=KoX  can always be included if. Substitution of Eqs(B5) and
—JQo(t)dt, and the explicit time dependence Wi®,t) and (g into L and averaging ove® yields the following aver-
Qo ,4(t) is due to the perturbation, and assumed to be slowygeq Lagrangiafito ouh]:

The unperturbed Lagrangialy, in this representation be-

comes a function of aingleindependent fast angle v?riglble . Q Q K2

0 2and assurges the formLo(U,U@iV@))Tl/Z{KlU@ A==—Ag= DA+ 2N, + ~2As+ Ay, (BY)
+U(Kg+K,Vg)?—(Qo+Q1Ve) I} —(a/2)U% This Lagrang- 2 4 4 4

ian describes a two-degrees-of-freeddhh, V) dynamical

problem in®, whereV is a cyclic variable. The problem where
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Ag = U3+ 3uguiu, + 3u3(U? +u3) + 3uj/8,  (BY)
Ay =203+ Uf + U3, (B9)
A2 = ZUOU]_U]_ + U U + Uivz + 4UOU2U2, (BlO)

PHYSICAL REVIEW E 71, 036206(2005

Az = U2+ 4U3 + v3(U2 + 3U2/4 + Ugly) + 4UgUhv v, + 4UZv3,
(B11)

and only the term with the relevafélow) phase mismatch,
O=0+&-¢q, is left in the driving part of the Lagrangian
after the averaging,

Ag= E(ul = Uguq)cosd.

5 (B12)
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